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Abstract. Temporal coding is studied with an oscillatory network model
that is a complex-valued generalization of the Cohen-Grossberg-Hopfield
system. The model is considered with synchronization and acceleration,
where acceleration refers to a mechanism that causes the units of the
network to oscillate with higher-phase velocity in case of stronger and/or
more coherent input. Applying Hebbian memory, we demonstrate that
acceleration introduces the desynchronization that is needed to segment
two overlapping patterns without using inhibitory couplings.

1 Introduction

Temporal coding requires synchronizing as well as desynchronizing mechanisms
[1]. (A review of temporal coding may be found in [2] and for a recent list of
references to implementations with oscillatory networks, see [3].) Desynchro-
nization may result from inhibitory couplings. Here, we consider an alternative
approach where desynchronization is due to a mechanism that arises in the con-
text of complex-valued neural networks. This mechanism, described and denoted
as acceleration in [4], has a natural interpretation in terms of neural features.
It implies that units of an oscillatory network take a higher-phase velocity for
stronger and/or more coherent inputs from the other units. In the following,
we describe the model and demonstrate the profound and favourable effect of
acceleration on the segmentation of two overlapping patterns. More details and
additional examples may be found in [4, 5, 6].

In section 2 we give the model, the examples are described in section 3, and
section 4 contains the summary.

2 Complex-Valued Neural Network Model

The oscillatory networks model that we use is a complex-valued generalization
of the classical Cohen-Grossberg-Hopfield (CGH) model [7, 8]. Given a network
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with N units, where the state of each unit k is described in terms of the complex
coordinate zk, k = 1, . . . , N , the model is given by

τ

zk

dzk

dt
= −1

2
ln

zkz̄k

1 − zkz̄k
+ J1,k + J2,kzkz̄k (1)

+
1
N

N∑
l=1

hkl

{
a + b

zlz̄k

z̄lzk

}
zlz̄l.

Here, z̄k are the complex-conjugate variables, t is the time, τ is a time-scale,
the (Hebbian) weights hkl will be specified below, and a > 0 is a real-valued
parameter. The remaining parameters may have imaginary parts:

J1,k = Ik +
i

2
τω1,k , J2,k =

i

2
τω2,k ,

and
b =

1
2

(σ + iτω3) ,

where σ > 0, ω3 ≥ 0 are real. The Ik describe inputs, the ω1,k are eigenfre-
quencies and the ω2,k parameterize shear terms. In the following, we find that
acceleration arises from non-vanishing ω3. Notice, equation 1 may be written as
a complex-valued gradient system [4].

The relation of equation 1 to the classical CGH model gets obvious by going
to real coordinates with amplitudes Vk and phases θk given by

z2
k = Vk exp(iθk), z̄2

k = Vk exp(−iθk).

The dynamics is restricted to the punctured unit disk,

0 < zkz̄k = Vk = g(uk) < 1,

where the signal function g is defined by

Vk = g(uk) =
1
2
(1 + tanh(uk)).

Using dg(u)/du = 2g(u)(1 − g(u)) and

uk = g−1(Vk) =
1
2

ln
Vk

1 − Vk
,

we obtain as real-valued formulation of equation 1:

τ
duk

dt
= Λ(uk)

(
Ik − uk +

1
N

N∑
l=1

wkl(θl − θk)Vl

)
(2a)

τ
dθk

dt
= τωk (u, θ) +

1
N

N∑
l=1

skl(θl − θk)Vl︸ ︷︷ ︸
, (2b)

synchronization terms
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with

ωk (u, θ) = ω1,k + ω2,kVk +
1
N

N∑
l=1

Δωkl(θl − θk)Vl︸ ︷︷ ︸
.

acceleration terms

The scaling factor is

Λ(uk) =
1

1 − Vk

and the phase-dependent couplings are given by

wkl(θ) = hkl

(
a +

σ

2
cos (θ) − τω3

2
sin (θ)

)
, (3)

skl(θ) = hkl σ sin (θ) , (4)

Δωkl(θ) = hkl ω3 cos (θ) . (5)

Equation 2a is recognized as being of the CGH type, now with phase dependent
couplings and phase dynamics given by equation 2b. The general system with
all-order mode couplings is given in [4].

The storage of P patterns ξp
k , with p = 1, . . . , P , enters equation 2 through

the couplings hkl. Here, it is sufficient to assume that ξp
k ∈ {0, 1}, where 1 (0)

corresponds to an on-state (off-state). In equations 3 to 5, Hebbian memory
may be used that is defined by

hkl =
P∑

p=1

λp ξp
kξp

l , (6)

with λp > 0. The λp describe the weights for patterns p.
The collective dynamics of the network may be described in terms of coher-

ences Cp and phases Ψp of the patterns, given by

Zp = Cp exp(iΨp) =
1

Np

N∑
k=1

ξp
kVk exp(iθk),

where Cp, Ψp are real, and 0 ≤ Cp < 1 [3]. These measures generalize coherence
measures that were used by Kuramoto, see [9] for a review.

3 Examples: Two Overlapping Patterns

In this section, we demonstrate the effect that acceleration has on the segmen-
tation of P = 2 overlapping patterns with equal weights λ1 = λ2 = 1/2. We
consider networks of N = 34 units and consider two cases of stored patterns.
Parameters are τ = 1, a/N = 2, σ/N = a, and the inputs Ik are chosen so
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that all units of the network get active. See [4] for the numerical approach. The
initial values for the uk are close to zero and the initial phases θk are uniformly
random distributed. In order to study the desynchronizing effect of acceleration
without it with the effect of different eigenfrequencies and shear forces, we set
ω1,k = ω2,k = 0 for every k.

3.1 Case of one dominating pattern

Examples 1 and 2. First, we consider a situation where one pattern is domi-
nating the other, i.e., one pattern has clearly more active units than the other.
We set ξ1

k = 1 for k = 1, ..., 26, and ξ2
k = 1 for k = 21, ..., N . All other compo-

nents are zero. Thus, there is an overlap of 6 units. We compare the case without
acceleration, i.e. ω3 = 0 (example 1), with a case of non-vanishing acceleration,
ω3/N = π/τ > 0 (example 2), see figure 1.
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Fig. 1: Pattern coherences Cp in case that pattern p = 1 is dominating. (A)
Example 1, (B) example 2. The solid lines give C1 and the dotted lines C2.

Without acceleration, both patterns take the same phase and the superposi-
tion problem is present. In contrast, with acceleration, the dominating pattern
p = 1 takes a state of enduring coherence, thereby segmenting itself from the
other pattern that shows a different phase dynamics. The superposition problem
is resolved with respect to pattern coherences.
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3.2 Without dominating pattern: pattern switching

Examples 3 and 4. Second, we consider a situation where none of the patterns
is dominating the other, i.e., both pattern have the same number of active units.
We set ξ1

k = 1 for k = 1, ..., 22, and ξ2
k = 1 for k = 13, ..., N . All other compo-

nents are zero. Thus, there is an overlap of 10 units. Again, we compare the
case without acceleration, i.e. ω3 = 0 (example 3), with a case of non-vanishing
acceleration, ω3/N = π/τ > 0 (example 4), see figure 2.
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Fig. 2: Pattern coherences Cp without dominating pattern (pattern switching).
(A) Example 3, (B) example 4. The solid lines give C1 and the dotted lines C2.

Without acceleration, both patterns take the same phase and the superpo-
sition problem is present. In contrast, with acceleration, the two patterns are
segmented in time by taking coherent states in alternating order. We refer to this
behavior as pattern switching. Again, the superposition problem is not present
in the sense that the two patterns do not take coherent states during the same
time periods.

4 Summary

Temporal coding with synchronizing and desynchronizing mechanisms was stud-
ied based on a complex-valued neural network model. Without using inhibitory
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couplings, the desynchronizing mechanism was due to acceleration [4], causing
the phase velocity of the oscillating units to increase with stronger and/or more
coherent input from the other units.

The profound and favorable effect of acceleration on segmenting two over-
lapping patterns was demonstrated with examples. In case that one pattern
was dominating the other in terms of a larger number of active units (assuming
equal weights for the patterns in equation 6), this pattern was segmented by
taking a coherent state in contrast to the other pattern. In case that no pattern
was dominating, pattern switching occurred where both patterns took coherent
states during time periods of alternating order.
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