
Electroencephalogram signal classification for

brain computer interfaces using wavelets and
support vector machines

Francesc Benimeli and Ken Sharman

Instituto Tecnológico de Informática - Complex Adaptive Systems
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Abstract. An electroencephalogram (EEG) signal classification proce-
dure for use in real-time synchronous brain computer interfaces (BCI)is
proposed. The features used to perform the classification consist in the
coefficients of a discrete wavelet transform (DWT) computed for each trial.
A support vector machine (SVM) algorithm has been applied to classify
the resultant feature vectors. Some experimental results obtained from the
experimental application of the proposed procedure to the classification of
two mental states are presented.

1 Introduction

BCI systems reveal as a promising solution which could both alleviate some
of the communication problems affecting severely impaired people and improve
the general interaction of humans with computers [1, 2]. EEG stands out as
the mostly applied technique in order to implement a BCI system specially due
to its non-invasiveness, ease of application and comparatively low cost of the
equipments [3, 4]. Different types of EEG signals have been applied in order to
predict the user intend. Some of them are induced as a response to a presented
stimulus, like evoked potentials or slow cortical potentials, which are used in
synchronous BCI systems, while others are spontaneously produced by the brain,
as μ or β rhythms, which, despite having also been applied for synchronous
systems, offer the possibility of designing an asynchronous BCI system [5, 6, 7].
In the latter case, several types of features can be extracted from the signals,
namely in time, frequency or joined time-frequency domain [8, 9].

In this work, the μ and, specially, β rhythms have been used in order to
extract time-frequency domain features in the form of DWT coefficients. An al-
gorithm has been designed in order to automatically reject data affected by EOG
artifacts. Time filtering, downsampling and DWT are the only processing steps
applied to measured data before classification by means of a SVM algorithm,
which, together with the computational performance of the involved algorithms,
makes the procedure suitable for application to a real-time BCI system. Fig.1
shows the main steps of the process.

The paper has been structured as follows. In section 2, the BCI system used
in the experiments is described and the processing of the acquired signals, pre-
vious to the feature extraction and classification , which is described in section
3, is shown. Section 4 shows some results obtained from the experimental ap-
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Fig. 1: Diagram of the steps involved in the applied classification procedure.

plication of the process described. Finally, section 5 collects some conclusions
from this work, as well as some future work.

2 Data Processing

This work is based on a real-time synchronous BCI system constituted by a
personal computer (PC), which provides the interaction with the user, as well
as a all necessary actions for the EEG signal processing and SVM classification,
and an ActiveTwo signal acquisition system from Biosemi1 controlled by means
of a modified version of the ActiView acquisition software.

The ActiveTwo system is constituted by an electrode cap, in order to facili-
tate the distribution of the 16 active electrodes applied over the scalp according
to the 10-20 international electrode positioning system, an analog-to-digital con-
verter (AD-Box) and a USB2 receiver. The EEG signals are originally acquired
with a sample frequency fs = 2048Hz, although this is later reduced per soft-
ware. The use of the active electrodes allows a reduction of the time required
for setting up the system as no special care must be taken to ensure and check
for low impedance values in the electrode-skin contacts. As no skin rubbing is
necessary, the process is also more comfortable for the user of the system.

During a typical training session, the user sits in front of a PC screen at
an approximate distance of 1.5 m [10]. The session is divided in a sequence of
trials performed randomly for each one of the mental states considered. Each
trial is structured according to the following phases: Fixation Time (1 s), during
which a grey rectangle is shown on the screen, Acoustic Signal (0.5 s), Indication
Presentation (2.5 s) on the screen according to the mental state which the user
is intended to generate, eventually Feedback Presentation (1 s), in the case of a
training session with feedback, and Pause between trials, a random time between
0.5 and 2.5 s in order to prevent adaption of the user.

A signal band-pass filtering is applied in order to restrict the content of the
measured signals to the frequency range of interest. In order to take profit of the
signal continuity, the filtering process is applied before the trial data extraction.

In the present application, the EEG signals are filtered with a band-pass
filter, implemented as an 8-th order inverse Chebyshev high-pass filter with a
cut-off frequency of 1Hz and a 9-th order inverse Chebyshev low-pass filter
with a cut-off frequency of 49Hz, which includes the whole frequency spectrum
where EEG features susceptible of being used for mental state classification can
appear. The applied procedure remains, in principle, open to the use of both low

1http://www.biosemi.com
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frequency features such as SCP (slow cortical potentials) and higher frequency
features such as ERDS (event related desynchronization and synchronization).

After processing the status channel, a downsampling of the data correspond-
ing to each trial and channel is performed so as to reduce both the computation
time and the size of the obtained feature vectors. The downsampling factor
must be determined according to the original sampling rate and the applied
time filtering.

Considering the trials selected above, channels Fp1 and Fp2, both located
near the eyes, are referenced and analyzed by means of the following algorithm in
order to detect possible interferences in the EOG activity in the form of abrupt
changes in the measured potentials, V, which exceed a certain previously selected
threshold.

Fast = 0 ;
Slow = avg (V( 1 : 1 0 ) ) ;
for i =1:n

Fast = Fast ∗0 .8 + (V−Slow ) ∗ 0 . 2 ;
Slow = Slow ∗0 .975 + V∗0 . 0 2 5 ;
i f | Fast |> eyeBl inkThreshold

re jectSegment ;
end

end

The trials affected by this phenomenon are removed from the data matrices,
thus not being considered in the later analysis. Also channels Fp1 and Fp2 are
eliminated from the data matrix after the EOG detection process.

3 Feature Extraction and Classification

The application of a wavelet transform allows us to obtain a time-frequency
representation of the signal, which provides better insight in the frequency dis-
tribution of the signal with time. In a DWT, the scale values for which the
transform is computed must be necessarily powers of 2. The feature vectors to
be used in the process are the coefficients of the DWT computed for each trial.
During the classification phase each one of them is assigned to a certain label or
mental state.

In this work, the SVM algorithm LIBSVM 2.8 has been applied to perform
the classification. This kind of algorithms presents some advantages with respect
to other classifiers [11], being one of the most important its high generalization
capacity for a reduced number of training trials. The classification implies the
resolution of an optimization problem like the following [12]:

min
w,b,ξ

1
2
wT w + C

l∑

i=1

ξi

subject to yi

(
wT φ (xi) + b

) ≥ 1 − ξi, ξi ≥ 0
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where (xi, yi) is a pair instance-label in a training set i = 1, . . . , l, xi ∈ Rn and
yi ∈ {0, 1}l; φ is the function defining the kernel K (xi, xj) = φ (xi)

T
φ (xj) and

C > 0 is the penalty parameter of the error term.
The SVM algorithm requires a training phase in which the feature vectors

generated for a series of trials a provided, together with the corresponding class
identifiers, or labels, in order to obtain a model which can separate the differ-
ent classes considered. As recommended in the literature about SVM [12, 11],
and like in other types of classification algorithms based on neural networks,
the feature vectors are individually scaled into the range, −1..1. In some cases,
it has also been observed that a later normalization of the feature vectors also
yields a slight further accuracy improvement. In the classification phase, the ac-
quired model is applied to identify the class corresponding to the feature vectors
generated for new trials.

In particular, a linear kernel with a penalization constant equal to one has
been used.

4 Experimental Results

The following classification experiments were performed starting from data ob-
tained in three different training sessions with respectively a total of 128, 161
and 172 trials.

Applying the procedure described in section 2, data corresponding to right
(R) and left (L) labels were extracted. The trial length was selected as 576
samples starting 64 samples before the presentation of the cue to the user, so
that 512 samples (0,25 s) correspond to the actual mental process to be classified.
A downsampling factor of 8 was selected, hence being the final sampling rate 256
Hz. After downsampling, each trial will thus contain 72 samples per channel.
An algorithm was applied to identify and suppress trials affected by eye blink
artifacts.

After removing channels Fp1 and Fp2 and referencing, the DWT was com-
puted for each data trial. In particular, a daubechy 4 wavelet was applied to
perform the DWT. The best prediction results have been obtained when consid-
ering only levels 4 and 5 of the DWT, which fairly correspond, for this wavelet
type, to frequencies 11.4286 Hz and 5.71429 Hz.

Fig. 2, corresponding to the first training session, show a graphical repre-
sentation of the DWT coefficients computed for the average over trials of each
label. A comparison is established between left IM (upper graphs) and right IM
(bottom graphs) for EEG channels P3 and C3, on the left side, P4 and C4, on
the right side, and Cz, on the center of the scalp.

In Table 1, the results obtained using the coefficients of the discrete wavelet
transform with daubechies 4 wavelets from the gsl library for windows are shown.
The considerations pointed out in [13] suggest that this type of wavelets is the
most adequate in this library for analysis of EEG signals. Data sets from the
three training sessions are applied alternatively as training and test sets. The
cross-validation results were obtained for each data set using 10 data subsets
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Fig. 2: DWT graphical representation using average over trials for the first
training session.

and 20 runs. Table 2 show the corresponding results when using directly the
time domain samples as feature vectors. As can be seen, accuracy is in general
significantly reduced.

Test Set
Training Set Session 1 Session 2 Session 3 Cross-Validation
Session 1 97.71 83.93 79.26 75.46± 2.19
Session 2 84.73 99.41 85.11 85.91± 1.34
Session 3 74.05 83.93 98.94 88.22± 1.78

Table 1: Accuracy results with DWT coefficients (daubechies 4 wavelets).

Test Set
Training Set Session 1 Session 2 Session 3 Cross-Validation
Session 1 100.00 79.76 75.00 68.62± 2.17
Session 2 74.81 100.00 71.28 84.63± 2.16
Session 3 74.81 71.43 100.00 80.47± 1.91

Table 2: Accuracy results with time domain samples.

5 Conclusions

In this work, a procedure for EEG signal classification on a synchronous BCI sys-
tem has been proposed and a description of the experimental procedure and the
methodology for signal processing, feature extraction and classification has been
presented. Some accuracy results obtained from its experimental application
allow the validation of the proposed classification procedure.

As can be observed, the cross-validation prediction errors for the second and
third sessions are respectively under 15% and 12%. Although the classification
has been performed using two mental states, the extension to additional mental
states is straight forward.
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