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Abstract. We describe a method for causal inference that measures the
strength of statistical dependence by the Hilbert-Schmidt norm of kernel-
based conditional cross-covariance operators. We consider the increase of
the dependence of two variables X and Y by conditioning on a third vari-
able Z as a hint for Z being a common effect of X and Y . Based on
this assumption, we collect “votes” for hypothetical causal directions and
orient the edges according to the majority vote. For most of our exper-
iments with artificial and real-world data our method has outperformed
the conventional constraint-based inductive causation (IC) algorithm.

1 Introduction

A major aim of many studies in the social, behavioral, and biological sciences is
the identification of cause-effect relationships among variables or events. With
the seminal work of Pearl and Spirtes et al. [1, 2] it became clear that under
reasonable assumptions, it is possible to derive causal information from purely
observational data. Their well-known approach for automatically generating
causal hypotheses, formalized by a directed acyclic graph (DAG), is based on
the Markov condition and the faithfulness assumption: Among all graphs that
contain enough causal arrows to explain all conditional statistical dependences,
one prefers those structures which allow only these conditional dependences.
A notable algorithm based on these principles is the inductive causation (IC)
algorithm. A refined version of IC is the PC algorithm1 (after its authors Spirtes
and Glymore [3]). Roughly speaking, the IC algorithm consists of three steps:

Step 1 Connect vertices X−Y if and only if no set of variables (excluding X,
Y ) SXY can be found with X ⊥⊥Y |SXY , i.e. X,Y are independent with
respect to the conditional probability measure given all variables in SXY .

Step 2 For each substructure X− Z −Y , where X and Y are non-adjacent,
orient the edges to X→Z←Y (a so-called v-structure), if Z /∈SXY .

Step 3 Orient as many of undirected edges as possible subject to the condition:
It should create neither a new v-structure nor a directed cycle.

However, if too few or no conditional independent relations are observed, IC
would have little chance to orient the edges in step 2. Another disadvantage

1The PC algorithm is implemented, for instance, in the TETRAD software, available at
www.phil.cmu.edu/projects/tetrad.
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of IC is that the categorical (maybe erroneously) decisions for independence in
step 1 will affect all the future algorithm behavior. In addition, testing inde-
pendence is a challenging task in its own right. The PC algorithm, a refinement
of IC, use the partial correlations for continuous variables under the assump-
tion of multivariate normal distribution and χ2 tests for categorical variables.
This paper tries to elaborate on these problems. We argue that the kernel-based

statistical independence measure seems to be helpful in learning causality. In
particular, taking the strength of dependence into account, our method is ro-
bust to over-determination of statistical dependence and thus also applicable to
datasets with all-over dependent networks. This requires an appropriate mea-
sure for the strength of unconditional dependence and conditional dependence.
For this purpose, we extend a dependence measure proposed by Gretton et al. [4]
which is based on the Hilbert-Schmidt (HS) norm of cross-covariance operators
to measure conditional dependence.

2 Measuring statistical dependence with kernels

The idea of measuring dependence by reproducing kernel Hilbert spaces (RKHS)
[5] is that statistical dependence can always be detected by correlations after data
are mapped into an appropriate feature space which is only implicitly given by
a kernel. Fukumizu, Bach and Jordan [6, 7] presented a similar approach for
kernelized dimension reduction and independent component analysis.

2.1 Cross-Covariance Operator and Independence

First, we introduce cross-covariance operators [8] expressing correlations in the
feature space and show its relation to independence of variables. Let (X ,BX )
and (Y,BY) be measurable spaces, and let (HX , kX ), (HY , kY) be RKHSs of
functions on X and Y, respectively, with measurable positive definite kernels
kX , kY . We consider a random vector (X,Y ): Ω→X × Y such that the expec-
tations EX [kX (X,X)] ,EY [kY(Y, Y )] are finite. Fukumizu et al.[7] have shown
that there exists a unique operator ΣY X from HX to HY such that

〈g,ΣY Xf〉HY
= EXY [f(X)g(Y )]− EX [f(X)] EY [g(Y )] = Cov [f(X), g(Y )]

holds for all f ∈ HX and g ∈ HY . This is called the cross-covariance operator.

It is known [8] that ΣY X has a representation of the form ΣY X =Σ
1/2
Y Y VY XΣ

1/2
XX ,

where VY X : HX →HY is a unique bounded operator such that ‖VY X‖ ≤ 1.
Bach et al. [6] have shown that ΣY X = 0 ⇔ X ⊥⊥ Y holds if Gaussian kernels2

are used. In analogy to the conditional covariance operator in [7], we define the
conditional cross-covariance operator as follows. Let (HX , kX ), (HY , kY) and
(HZ , kZ) be RKHSs on measurable spaces X , Y and Z, and (X,Y, Z) a random
vector on X × Y × Z. The conditional cross-covariance operator is defined by

ΣY X|Z := ΣY X − Σ
1/2
Y Y VY ZVZXΣ

1/2
XX .

2For X ⊂ IRm with some m ∈ IN, the so-called Gaussian radial basis function (RBF) kernel

kσ(x, x′) = exp(−‖x − x′‖2/2σ2) with parameter σ ∈ IR+.
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where VY Z and VZX are the bounded operators derived from ΣY Z and ΣZX .
It can be shown that 〈g,ΣY X|Zf〉HY

= EZ [Cov[f(X), g(Y )|Z]] for any f ∈ HX

and g ∈ HY . If we “blow up” the variables X and Y by setting Ẍ := (X,Z)
and Ÿ := (Y,Z) we can capture every conditional dependence using the cross-
covariance operator in the sense that ΣŸ Ẍ|Z = 0 ⇔ X ⊥⊥ Y |Z, if Gaussian

kernels are used. Furthermore, if (X,Y ) ⊥⊥ Z, we have ΣŸ Ẍ|Z = ΣY X ⊗ TZ ,

where TZ is defined by 〈h2, TZh1〉 := E[h1(Z)h2(Z)] for arbitrary h1, h2 ∈ HZ .
We rescale the measure with βZ .

Definition 1 The strength of the marginal and conditional dependence can be

respectively defined by HY X := ‖ΣY X‖
2
HS and HY X|Z := βZ

∥∥ΣŸ Ẍ|Z

∥∥2

HS
with

βZ := 1/‖TZ‖
2
HS.

By means of rescaling in this way, the measure of conditional dependence equals
that of unconditional dependence, if the conditional variable Z is independent
of X and Y .

Theorem 1 We have (X,Y ) ⊥⊥ Z =⇒ HY X|Z = HY X . Moreover, if Gaussian

kernels are used, HY X = 0⇐⇒ X ⊥⊥ Y and HY X|Z = 0⇐⇒ X ⊥⊥ Y |Z.

For notational convenience, we will henceforth drop the dots on X and Y for
the indices that appear in the context of conditional cross-covariance operators.

2.2 Empirical estimation of Hilbert-Schmidt dependence measures

In this section, we will consider the estimation of HY X and HY X|Z after finite
sampling. It has been shown in [4] that

Ĥ
(n)
Y X :=

1

(n− 1)2
Tr

(
K̂YK̂X

)
.

is a consistent estimator for HY X . Here K̂ is the centralized Gram matrix [9].
Fukumizu et al. [10] showed that the estimator of the cross-covariance operator
guarantees to converge in HS norm at rate n−1/2.

In some analogy to the construction of an estimator for ΣXX|Z given in [11]
we have constructed a consistent estimator on HY X|Z by

Ĥ
(n,ε)
Y X|Z :=

β̂
(n)
Z

(n− 1)2
Tr

(
K̂YK̂X − 2K̂YK̂Z(K̂Z + εI)−2K̂ZK̂X

+K̂YK̂Z(K̂Z + εI)−2K̂ZK̂X K̂Z(K̂Z + εI)−2K̂Z

)
.

Here the estimator β
(n)
Z is given by n(n − 1)/

∑
i6=j kZ(zi, zj)

2 and ε > 0 a reg-

ularization constant that enables inversion3. If ε converges to zero more slowly
than n−1/2 one can show that this estimator converges to HY X|Z .

3The regularizer is therefore required as the observed data are finite, whereas the feature
space could be infinite dimensional. The regularization may be understood as a smoothness
assumption on the eigenfunctions of HZ . Our experiments showed that the empirical measures
are insensitive to ε, if it is chosen sufficiently small.
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3 Causal learning algorithm using dependence measures

One could certainly use the above conditional dependence measure for the IC
algorithm. However, it seems as if sometimes so much dependence is detected
that an orientation of edges thereafter is impossible. We propose therefore the
following heuristic rule: Conditioning on a common effect has the tendency to
generate dependence between the causes. This is at least true if the dependence
between the causes is small without conditioning. If the causes X,Y are already
strongly dependent, conditioning on Z can, of course, decrease the dependence.
Nevertheless we assume that it will typically decrease the dependence less than
conditioning on a common cause would do.

Based on this intuition, we introduce a voting-like procedure for orientation
of the edges: for any triple X−Z−Y (X and Y not necessarily non-adjacent) one
gets a vote for Z being a common effect of X and Y , if and only if HYX|Z >λ HYX ,
with an appropriate λ>0. Counting these votes we may direct most (not always
all) edges according to the majority vote. We choose λ1 very large in the first

run. Then we set λ2 := max{1,
HZX|Y

HZX
,

HZY |X

HZY
} and λ3 := max{

HZX|Y

HZX
,

HZY |X

HZY
}

in the second and third run. In summary, we sketch our kernel-based causal
learning (KCL) algorithm as follows:

Step 1 Connect vertices X−Y if and only if no set of variables (excluding X
and Y ) Sxy can be found with HY X|Sxy

< ε0 (ε0 very small).

Step 2 Direct edges as follows: (a) Check for all substructures X−Z−Y (X
and Y not necessarily non-adjacent) whether Z is a candidate for being
a common effect of X and Y on the basis of λ1. If this is the case the
orientations X→Z and Z←Y both obtain a vote. Direct all edges which
obtained at least one vote (for either of both directions) according to the
majority principle. If the result is balanced, leave the edge undirected. (b)
The same procedure with λ2. (c) The same procedure with λ3.

Step 3 As IC in Section 1.

4 Experiments

This section describes some experiments with real-world data. We have chosen
datasets where some statements about the true causal structure is obvious. The
first and last dataset are listed as examples for TETRAD on its project webpage.

The first dataset describes a test of food products for palatability. The ex-
periment involved the effects on palatability of a coarse versus fine screen (large
“pieces” versus small “pieces”) and of a low versus high concentration of a liquid
component. The dataset consists of 16 cases and three variables, i.e., Score:
total palatability score for 50 consumers: General Foods employed a 7-point
scale from −3 (terrible) to +3 (excellent) with 0 representing “average”; Liq-

uid: liquid level (0: “low”, 1: “high”); and Screen: screen type (0: “coarse”,
1: “fine”). The result of KCL (Fig. 1, right) is consistent with our knowledge
that Score is the common effect of the independent causes Screen and Liq-

uid, whereas the PC algorithm (Fig. 1, left) detects merely an undirected edge
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between Screen and Score. Note that this is a shortcoming of the indepen-
dence tests used by the standard PC. That KCL performs better is due to the
kernel-based independence measures having kept the type II errors (deciding in-
dependence when there is dependence) to a lower level than the conventional
approach.

Fig. 1: Results obtained by PC (left) and KCL (right) for taste score data.

In the next experiment, the influence on sintered bodies of the variation of
supplemental powder content was investigated. The supplemental powder was
added to a powder mixture in different ratios (0%− 70%), from which sintered
ceramic parts were fabricated. The ceramic parts were sintered at four differ-
ent temperature levels: 1300◦C, 1350◦C, 1400◦C and 1450◦C. Using an optical
scanning device, the surface roughness of these parts is characterized by the
roughness average Ra as well as roughness depths RISO

z and RDIN

z , depending on
ISO or DIN standards. The dataset contains 80 measurements. We know that
the supplemental Powder Content and sintering Temperature influence
the Surface Roughness of sintered parts and not vice versa. In our experi-
ments, we used different definitions for the variable Surface Roughness: Ra,
RISO

z , RDIN

z , (Ra, RISO

z ), (Ra, RDIN

z ), (RISO

z , RDIN

z ), and (Ra, RISO

z , RDIN

z ). In all 7
cases KCL identified Surface Roughness as the common effect. This is an
advantage of KCL against PC, since the former can be extended to multidimen-
sional domains in a straightforward way. The result4 of PC (Fig. 2, left) is less
specific than KCL (Fig. 2, right).

Fig. 2: Results obtained by PC (left) and KCL (right) for ceramic surface data.

As cheese ages, various chemical processes take place that determine the taste
of the final product. In a study of cheddar cheese from the LaTrobe Valley of
Victoria, Australia samples of cheese were analyzed for their chemical compo-
sition and were subjected to taste tests. The dataset contains concentrations
of various chemicals in 30 samples of mature cheddar cheese and a subjective
measure of taste for each sample. Overall Taste scores were obtained by com-
bining the scores from several tasters. The variables Acetic, H2S and Lactic

4We interpreted variable Surface Roughness in case of PC as a one-dimensional variable:
Ra, RISO

z
or RDIN

z
. All the three interpretations yielded the same result as (Fig. 2, left).
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represent the concentrations of acetic asid, hydrogen sulfide, and lactic acid.
The result of KCL (Fig. 3, right) is also more specific than PC (Fig. 3, left).
The detected causal knowledge that Taste is only an effect and not a cause of
any other variable is in agreement with the ground truth. Due to our lack of
chemical understanding, we do not speculate on the plausibility of the influences
among the various chemicals, i.e., Acetic, H2S and Lactic.

Fig. 3: Results obtained by PC (left) and KCL (right) for cheese data.
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