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Abstract. Our work is concerned with finding optimum conncction strategics in high-
performance associative memory models. Taking inspiration from axonal branching in
biological neurons, we impose a displacement of the point of efferent arborisation, so that the
output from each node travels a certain distance before branching to connect to other units. This
technique is applicd to networks constructed with a connectivity profile based on Gaussian
distributions, and the results compared to those obtained with a network containing purely local
connections. displaced in the same manner. 1t is found that displacement of the point of
arborisation has a very beneficial effect on the performance of both network types, with the
displaced locally-connected network performing the best.

1 Introduction

In recent work [I, 2] we have explored the pattern-completion performance of
sparsely-connected associative memory models using a variety of different connection
strategies. Our studies included networks in which the probability of a connection
between any two nodes varied with distance according to Gaussian and exponential
probability distributions. We concluded that when wiring costs are taken into account,
relatively tight Gaussian and exponential connectivity distributions perform the best,
and are considerably more efficient than small-world connection strategies based on
the progressive rewiring of locally-connected networks.

In the present work, we explore the performance of sparsely-connected
associative memories using a new connection strategy: that of displaced connectivity.
This work is inspired by the work of Hertzog et al [3] on the synchronous spiking
behaviour of neurons, in which they explore the use of local connectivity with a small
lateral displacement, in a 2D neural ‘gas’.

Their work was concerned with establishing, in a locally-connected network, the
displacement distance which would provide a compromise between mean connection
length and the mean minimum path length (the minimum number of steps separating
each pair of nodes averaged over the whole network), as used by Watts and Strogatz
[4]. Our study is concerned with the effect of lateral displacement on the pattern-
completion performance of 1D associative memory models with local connectivity,
and also with patterns of connectivity based on a Gaussian distribution.

2 Network dynamics, training and performance measurement

A network of perceptrons is arranged in a one-dimensional structure with wrap-
around at the ends (see Figure 1a), and is trained on sets of random patterns of length
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N, where N is the number of units in the network. The output of each unit is connected
to the inputs of a fixed number, &, of other units. The networks used in the present
studies have no symmetric connection requirement [5], and the recall process uses
asynchronous random order updates, in which the local field of unit / is given by:

b= wyS)

J#i
where w, is the weight on the connection from unit j to unit i, and S (= £1) is the
current state. The dynamics of the network is given by the standard update:
S; =0®(h,), where © is the Heaviside function. Network training is based on the

perceptron training rule [6] chosen for its higher resultant capacity than that of the
standard Hopfield model. The rule is designed to drive the local fields of each unit the
correct side of the learning threshold, 7, for all the training patterns. Earlier work has
established that a learning threshold of 7= 10 gives good results [7].

Network performance is determined by measuring Effective Capacity [8] [9].
This is a measure of the number of patterns which a network can restore under a
specific set of conditions. The network is first trained on a set of random patterns.
Once training is complete, the patterns are each randomly degraded with 60% noise,
before presenting them to the network. After convergence, a calculation is made of
the degree of overlap between the output of the network, and the original learned
pattern. The Effective Capacity of the network is the highest pattern loading at which
this mean overlap for the pattern set is 95% or greater. The Effective Capacity of a
network has been shown to track its underlying maximum theoretical capacity [9].

3 Gaussian connectivity with displaced efferent arborisation

In the first part of our study we examine the performance of a network with a
Gaussian connectivity distribution in which the point of efferent arborisation is given
a progressively larger lateral offset. The biological basis for this model would be an
axon emerging from each neuron, which then travels for a distance (equivalent to our
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Fig. 2: Ltfective Capacity vs Gaussian o
in networks with a range of arborisation
displaccments, from 0 to 100. The
network is built from 500 units with 350
cfferent connections per node. Results are
averaged over 200 runs.

[Fig. 1. Ulustration of a locally-
connected network, a, and a network
with displaced local connectivity, b.
Both networks have 14 nodes, with 4
efferent connections per node.
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displacement distance) before arborisation. It then connects to other neurons with a
Gaussian probability distribution of width . See Figure 1b, which illustrates the
displacement of a small locally-connected network. In our simulations we give a
random direction of travel to the emergent axon around the ring, so that it has an
equal probability of travelling clockwise or anticlockwise around the ring before
arborisation.

Figure 2 shows the results obtained with a network of 500 units with 50 efferent
connections per node. Measurements of Effective Capacity were made for the
following lateral displacements: 0, 20, 40 and 100 units, varying the Gaussian ¢
within the range 20 to 80 in each case. As may be seen, the effect of introducing a
progressively larger lateral displacement is to decrease the spread of the Gaussian
required to produce a particular Effective Capacity. So, for example, to achieve an
Effective Capacity of around 12, the non-displaced Gaussian requires a ¢ approaching
30, while the Gaussian displaced by 20 units only requires a ¢ of around 20 to achieve
a similar result. In other words, the greater the displacement, the less broad the
required spread of connectivity at the point of arborisation to achieve a given
performance. When the displacement reaches about 100 units, there appears to be no
further advantage in broadening the Gaussian spread of connections (the maximum
possible displacement around the ring is 250 units).

Although we can see from Figure 2 that all four plots achieve the same
maximum  Effective Capacity of around 16, and that those with the greatest
displacement reach the maximum value at lower values of o, the effect of
displacement on wiring cost is not immediately obvious. To clarify this, Figure 3
shows the Effective Capacity of the four networks plotted against the corresponding
mean wiring length of each network. In calculating wiring length here, we assume
that the output of each node travels along a single connection until it arborises.

For comparison purposes, Figure 3 also depicts the results for a non-displaced
progressively-rewired network (rewired in steps of 10% from 0 to 100%), which, as
we have previously shown [1], performs less well than its Gaussian counterpart, and
is the poorest performer here.

From the graph it may be seen that while all architectures are capable of
attaining the highest Effective Capacity of about 16, there are considerable
differences in wiring costs. The progressively-rewired network performs the worst,
while the Gaussian networks show better and better performance as the arborisation
point is progressively displaced. The network whose points of arborisation are
displaced by 100 units achieves an Effective Capacity of around [5.5 at a mean
wiring length of just 19 units, for example, whereas the non-displaced Gaussian
reaches a mean wiring length of 60 before it achieves the same Effective Capacity.
This represents a considerable gain.

4 Local connectivity with displaced efferent arborisation
The results in Figure 3, in which very tight Gaussian distributions with displaced

arborisation perform well, suggest that we may also be able to obtain good
performance by displacing the arborisation point ina network with purely local
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Fig. 3: Effective Capacity vs mean wiring length for a network of 500 units with 50 efferent
connections per node. Architectures arc based on a progressively-rewired network (rewired
in steps of 10% from 0 to 100%), together with four networks with Gaussian distributions of
varying width, each of whose point of efferent arborisation has a different lateral
displacement, d, ranging from O to 100 units. Results arc averaged over 200 runs.

connectivity. To examine this question we measured the Effective Capacity of a
locally-connected network of 500 units, each with 50 efferent connections, with
lateral displacements in the range 0 to 200 units. Figure 4 shows the results. The first
point on the graph represents the performance of the network with purely local
connectivity (displacement is zero). This is poor, as expected. The first displacement
of 10 units brings a small improvement, but then successive increases reap more
considerable rewards, with a reasonably steep linear increase in Effective Capacity as
the displacement is increased from 10 to 50 units in steps of 10. The response then
flattens out at an Effective Capacity of around 16 by the time the displacement has
reached 60 or 70.
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Fig. 4: LCffective Capacity vs displacement for a locally-connected network of 300 units,
each with 50 afferent connections. Results are averages over 200 runs.

In order to see the effect of displacement of a locally-connected network on
performance when wiring costs are taken into account, we again plot Effective
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Capacity against mean wiring length; and for comparison purposes we have included
the displaced Gaussian and rewiring data from Figure 3. The results are shown in
Figure S.
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Fig. 5. Effective Capacity vs mean wiring length for a network of 500 units, with 50
cfferent connections per node. Architectures are based on a local network with increasing
displacement from 0 to 100, a progressively-rewired nctwork, and four networks with
Gaussian distributions of varying width, each of whose point of efferent arborisation has a
different lateral displacement, d, ranging from 0 to 100 units. Results are averaged over 200
runs.

As may be seen, the displaced-local network clearly outperforms all the others,
reaching an Effective Capacity of more than 16 at a mean wiring length of 17 units.
None of the other networks reach this level of Effective Capacity until their mean
wiring lengths are considerably greater.

The displaced-local network thus appears to be an interesting contender when
attempting to achieve good pattern-completion performance at low wiring costs.
Moreover, the time which the associator takes to converge during recall appears to be
comparable to other well-performing networks of its size (about 8 epochs in the above
tests).

The reason for the improved wiring efficiency observed here in networks built
with displaced connectivity appears to lie in the sharing of the efferent conduit. In
order for an associative memory to perform well, each of its nodes must be connected
to some of the nodes which are not immediately local to it [2]. This requirement for
non-local connectivity, however, significantly adds to the mean wiring length of the
network. But by using displaced efferent arborisation, non-local connectivity can be
achieved at a very low wiring cost.

5 Conclusion

Our experiments establish the important result that by displacing the point of efferent
arborisation in a sparsely-connected associative memory model, we can significantly
reduce wiring costs while achieving the same pattern completion performance.
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In networks with patterns of connectivity based on a Gaussian distribution, the
effect of introducing a displacement of the point of efferent arborisation is to increase
the Effective Capacity of the network. The improvement in performance is most
noticeable with tight Gaussian distributions (¢ = 20), where introducing a
displacement of 20 units results in an increase in Effective Capacity from around 9 to
just below 12. The overall effect of introducing a displacement of efferent
arborisation in a network with Gaussian connectivity is to decrease the mean wiring
length of the network at which a particular Effective Capacity is reached. In this
respect the best results are achieved with the tightest Gaussian distributions and the
largest displacements.

In the second set of experiments, the performance of a locally-connected
network was measured at progressively greater displacements of the point of efferent
arborisation. It was found that as the displacement was increased from 10 to 50 units,
the Effective Capacity increased linearly from around 6 to 15, after which little
further improvement occurred. In terms of achieving a high Effective Capacity at low
wiring costs, the displaced local network performed the best, exceeding the results of
the displaced Gaussian. At a displacement of 70 units the Effective Capacity of the
displaced local network is 15.6, and has a mean wiring length of 14.4 units. Only the
very tightest Gaussian distribution (o = 20) with the greatest displacement
(displacement = 100 units) came close to this, with an Effective Capacity of 15.5 and
a mean wiring length of 19.0 units.

It thus appears that a network built using purely local connectivity with
displaced efferent arborisation represents an exceedingly efficient connection strategy
for the construction of associative memories. This strategy would be expected to pay
dividends in any physical implementation of associative memories such as those
considered here, whether biologically or silicon based.
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