
Replacing eligibility trace for action-value

learning with function approximation

Kary FRÄMLING

Helsinki University of Technology
PL 5500, FI-02015 TKK - Finland

Abstract. The eligibility trace is one of the most used mechanisms
to speed up reinforcement learning. Earlier reported experiments seem
to indicate that replacing eligibility traces would perform better than ac-
cumulating eligibility traces. However, replacing traces are currently not
applicable when using function approximation methods where states are
not represented uniquely by binary values. This paper proposes two mod-
ifications to replacing traces that overcome this limitation. Experimental
results from the Mountain-Car task indicate that the new replacing traces
outperform both the accumulating and the ‘ordinary’ replacing traces.

1 Introduction

Eligibility traces are an essential element of reinforcement learning because they
can speed up learning significantly, especially in tasks with delayed reward. Two
alternative implementations of eligibility traces exist, i.e. the accumulating eli-
gibility trace and the replacing eligibility trace. As reported in [4], the replacing
trace would seem to perform better than the accumulating trace. Unfortu-
nately, current replacing traces can not be used with continuous-valued function
approximation methods for action-value learning because traces of other states
and actions than the intended ones may be affected [5, p. 212].

In this paper, we propose two modifications to replacing eligibility traces
that make it possible to use them with continuous-valued function approxima-
tion. The modified replacing eligibility trace is compared with accumulating
and ‘ordinary’ replacing traces. The experimental task used is the same as in
[4], i.e. the well-known Mountain-Car task. Experiments are performed using
a grid discretisation (i.e. lookup-table), a CMAC discretisation and a Radial
Basis Function (RBF) function approximator.

After this introduction, section 2 describes the background and theory of
eligibility traces both for the case of discrete state spaces and for continuous
state spaces, including the use of function approximators. Section 2 also explains
the modifications to replacing eligibility traces proposed in this paper, followed
by experimental results in section 3 and conclusions.

2 Eligibility traces for action-value learning

Most current RL methods are based on the notion of value functions. Value
functions either represent state-values (i.e. value of a state) or action-values (i.e.

313

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



the value of taking an action in a given state, usually called Q-value). Action-
value learning is typically needed in control tasks. The SARSA method [3] seems
to be the most popular method for learning Q -values for the moment. SARSA
is a so-called on-policy method, which makes it easier to handle eligibility traces
than for off-policy methods such as Q-learning. In SARSA, Q -values are updated
according to

Qt+1(s, a) = Qt(s, a) + αδtet(s, a), for all s, a, (1)

where α is a learning rate, et(s, a) is the eligibility trace of state s and action
a and

δt = rt+1 + γQt(st+1, at+1) − Qt(st, at), (2)

where rt+1 is the reward received upon entering a new state, γ is the discount
rate and Qt(st, at) and Qt(st+1, at+1) are the action-value estimates for the
current and next state, respectively.

Eligibility traces are inspired from the behaviour of biological neurons that
reach maximum eligibility for learning a short time after their activation. El-
igibility traces were mentioned in the context of Machine Learning at least as
early as 1972 and used for action-value learning at least as early as 1983 [1]. The
oldest version of the eligibility trace for action-value learning seems to be the
accumulating eligibility trace:

et(s, a) =
{

γλet−1(s, a) + 1 if s = st and a = at;
γλet−1(s, a) otherwise.

for all s, a, (3)

where λ is a trace decay parameter. In [4] it was proposed to use a replacing
eligibility trace instead of the accumulating eligibility trace:

et(s, a) =

⎧⎨
⎩

1 if s = st and a = at;
0 if s = st and a �= at;
γλet−1(s, a) if s �= st.

for all s, a. (4)

The replacing eligibility trace outperformed the accumulating eligibility trace
at least in the well-known Mountain-Car task [4], which has also been selected
for the experiments reported in section 3. In the Mountain-Car task the state
space is continuous and two-dimensional. In order to use equations 1 to 4 with
a continuous-valued state space, it becomes necessary to encode the real state
vector �s into a corresponding binary feature vector, �φ. A great amount of work
on RL still uses binary features, as obtained by grid discretisation or the CMAC
tile-coding [5]. However, it is also possible to perform action-value learning with
continuous-valued features or other function approximation methods. In that
case, equation 1 becomes [5, p. 211]:

�θt+1 = �θt + α [vt − Qt(st, at)]∇�θt
Qt(st, at), (5)

314

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



where �θt is the parameter vector of the function approximator. For SARSA,
the target output vt = rt+1 + γQt(st+1, at+1), which gives the update rule:

�θt+1 = �θt + αδt�et, where (6)

δt = rt+1 + γQt(st+1, at+1) − Qt(st, at), and (7)

�et = γλ�et−1 + ∇�θt
Qt(st, at) (8)

with �e0 = �0, which represents an accumulating eligibility trace. This method
is called gradient-descent Sarsa(λ) [5, p. 211]. Equation 3 is a special case of
equation 8 when using binary state representations because then ∇�θt

Qt(st, at) =
1 when s = st and a = at and zero otherwise. When artificial neural networks
(ANNs) are used for learning an action-value function, an eligibility trace value
is usually associated with every weight of the ANN [1]. Then the eligibility trace
value reflects to what extent and how long ago the neurons connected by the
weight have been activated.

It seems like no similar generalisation exists for the replacing trace in equation
4. In this paper, we propose the following update rule for replacing traces:

�et = max(γλ�et−1,∇�θt
Qt(st, at)). (9)

Even though no theoretical or mathematical proof is proposed here for this
update rule, it makes it possible to compare the performance of accumulating
and replacing eligibility traces also for continuous function approximation. Ex-
cept for the resetting of unused actions, Equation 4 is a special case of equation
9 when using binary state representations. In addition to the resetting of unused
actions, setting an action’s trace to one for the used action in Equation 4 is a
major obstacle for using replacing traces with continuous-valued function ap-
proximators. In the case of binary features, this is feasible because the traces to
set or reset can be uniquely identified. For continuous-valued features, it would
be necessary to define thresholds for deciding if a feature is sufficiently ‘present’
for representing the current state or not in order to set the corresponding trace
values to one or to zero. Furthermore, there seems to be no strong theoretical
foundation for resetting the traces of unused actions to zero. In [4] it is indicated
that resetting the trace was considered preferable due to its similarity with first-
visit Monte-Carlo methods, while it is indicated as optional in [5]. Both [4] and
[5] also call for empirical evidence on the effects of resetting the traces of unused
actions but it seems like no such experimental results have been reported yet.
The experimental results in the next section will attempt to give more insight
into this question.

3 Mountain-Car experiments

In order to simplify comparison with earlier work on eligibility traces in con-
trol tasks, we will here use the same Mountain-Car task as in [4] where the

315

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



dynamics of the task are described. The task has a continuous-valued state
vector �st = (position, velocity) of the car. The task consists in accelerating an
under-powered car up a hill, which is only possible if the car first gains enough
inertia by backing away from the hill. The three possible actions are full throt-
tle forward (+1), full throttle backward (-1) and no throttle (0). The reward
function used is the cost-to-go function as in [4], i.e. giving -1 reward for every
step except when reaching the goal, where zero reward is given. The parameters
�θ were set to zero before every new run so the initial action-value estimates are
zero. Therefore the initial action-value estimates are optimistic compared to the
actual action-value function, which encourages exploration of the state space.
The discount rate γ was set to one, i.e. no discounting.

In addition to the CMAC experiments used in [4], experiments were per-
formed using a grid discretisation (‘lookup-table’) and a continuous-valued Ra-
dial Basis Function (RBF) function approximator. The grid discretisation used
8×8 tiles while CMAC used five 9×9 tilings as in [4]. CMAC tilings usually have
a random offset in the range of one tile but for reasons of repeatability a regular
offset of tile−range

number−of−tilings was used here. With the RBF network, feature values
are calculated as:

φi(�st) = exp
(
− (�st − �c)2

r2

)
, (10)

where �c is the centroid vector of the RBF neuron and r is the spread pa-
rameter. 8×8 RBF neurons were used with regularly spaced centroids. In the
experiments, an affine transformation mapped the actual state values from the
intervals [-1.2,0.5] and [-0.07,0.07] into the interval [0,1] that was used as �s. This
transformation makes it easier to adjust the spread parameter (r2 = 0.01 used
in all experiments). The action-value estimate of action a is then:

Qt(�st, a) =
N∑

i=1

wia

(
φi/

N∑
k=1

φk

)
, (11)

where wia is the weight between the ‘action’ neuron a and the RBF neuron i.
The division by

∑N
k=1 φk, where N is the number of RBF neurons, implements

a normalized RBF network. Equation 11 without normalisation was also used
for the binary features produced by grid discretisation and CMAC. Every pa-
rameter wia, has its corresponding eligibility trace value. For the accumulating
trace, equation 8 was used in all experiments, while equation 9 was used for the
replacing trace.

Results for the three methods accumulating trace, replacing trace with re-
set for unused actions and replacing trace without reset for unused actions are
compared in Figure 1. The results are indicated as the average number of steps
per episode for 50 agents that each performed 200 episodes for grid discretisa-
tion and 100 episodes for CMAC and RBF. Figure 1 shows the results obtained
with the best learning rate values found, which are indicated in Table 1. Every
episode started with a random position and velocity.

316

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



0.0 0.2 0.4 0.6 0.8 1.0

10
0

15
0

20
0

25
0

30
0

35
0

Mountain−Car, Lookup−Table

λ

A
ve

ra
ge

 S
te

ps
/E

pi
so

de
 a

t b
es

t α

accumulating

with reset

without reset

0.0 0.2 0.4 0.6 0.8 1.0

80
90

10
0

11
0

12
0

Mountain−Car, CMAC

λ
A

ve
ra

ge
 S

te
ps

/E
pi

so
de

 a
t b

es
t α

accumulatingwith reset

without reset

0.0 0.2 0.4 0.6 0.8 1.0

70
80

90
10

0
11

0

Mountain−Car, RBF

λ

A
ve

ra
ge

 S
te

ps
/E

pi
so

de
 a

t b
es

t α accumulating

without reset

Fig. 1: Results with best α value of different methods as a function of λ. Error
bars indicate one standard error.

There is no significant difference between the three methods when using grid
discretisation. With CMAC, the replacing trace without reset is the best while
the accumulating trace performs the worst. With RBF, the replacing trace with
reset is not applicable due to the reasons explained in section 2. The replacing
trace without reset outperforms the accumulating trace. As indicated by Table
1, the accumulating trace is more sensitive to the value of the learning rate than
the replacing traces. This is because the �et value in Equation 6 becomes bigger
for the accumulating trace than for the replacing traces so the learning rate needs
to be decreased correspondingly. Better results might be obtained by fine-tuning
of the learning rate or by using a normalized least mean square (NLMS) version
of Equation 6 (see e.g. [2] on the use of NLMS in a reinforcement learning task).

317

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



Method λ=0 λ=0.4 λ=0.7 λ=0.8 λ=0.9 λ=0.95 λ=0.99
Accumulating Grid 0.3 0.3 0.1 0.1 0.1 0.05 0.05

CMAC 0.26 0.2 0.14 0.1 0.08 0.04 NA
RBF 4.7 3.3 2.3 2.1 0.9 0.5 0.1

With reset Grid 0.3 0.3 0.3 0.3 0.3 0.3 0.3
CMAC 0.28 0.24 0.28 0.3 0.24 0.22 0.12
RBF NA NA NA NA NA NA NA

Without reset Grid 0.3 0.3 0.3 0.3 0.3 0.3 0.3
CMAC 0.26 0.26 0.28 0.26 0.2 0.22 0.14
RBF 4.9 4.3 4.3 4.7 3.9 3.3 2.5

Table 1: Best α values for different values of λ. NA: Not Applicable.

4 Conclusions

The experimental results confirm that replacing traces give better results than
accumulating traces with CMAC for the Mountain-Car task. Replacing traces
are also more stable against changes in learning parameters than accumulating
traces. The replacing eligibility trace without reset of unused actions gives the
best results with both CMAC and RBF. Therefore, the replacing eligibility trace
proposed in this paper (Equation 9) is the best choice at least for this task.
Experiments with other tasks should still be performed to see if the same applies
to them.

It also seems that structural credit assignment (i.e. weights of function ap-
proximator in this case) is more powerful than temporal credit assignment (i.e.
eligibility traces in this case). The improvement is greater when passing from
grid discretisation to CMAC to RBF than what can be obtained by modifying
the eligibility trace or its parameters. For instance, the best result with RBF
and no eligibility trace is 80 steps/episode, which is better than the best CMAC
with λ = 0.95 (86 steps/episode). Therefore the utility of eligibility traces seems
to decrease if appropriate structural credit assignment can be provided instead.

References

[1] A.G. Barto, R.S. Sutton and C.W. Anderson, Neuronlike Adaptive Elements That Can
Solve Difficult Learning Control Problems, IEEE Transactions on Systems, Man, and
Cybernetics, 13:835-846, 1983.

[2] K. Främling, Adaptive robot learning in a non-stationary environment. In M. Verley-
sen, editor, proceedings of the 13th European Symposium on Artificial Neural Networks
(ESANN 2005), pages 381-386, April 27-29, Bruges (Belgium), 2005.

[3] G.A. Rummery and M. Niranjan, On-Line Q-Learning Using Connectionist Systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering De-
partment, 1994.

[4] S.P. Singh and R.S. Sutton, Reinforcement Learning with Replacing Eligibility Traces,
Machine Learning, 22:123-158, 1996.

[5] R.S Sutton and A.G. Barto. Reinforcement Learning, MIT Press, Cambridge, Mas-
sachusetts, 1998.

318

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.


