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Abstract. This paper reviews the recent surge of interest in convex
optimization in a context of pattern recognition and machine learning.
The main thesis of this paper is that the design of task-specific learning
machines is aided substantially by using a convex optimization solver as a
back-end to implement the task, liberating the designer from the concern
of designing and analyzing an ad hoc algorithm. The aim of this paper
is twofold: (i) it phrases the contributions of this ESANN 2007 special
session in a broader context, and (ii) it provides a road-map to published
results in this context.

1 Introduction

Recently, techniques of Convex Optimization (CO) take a more prominent place
in learning approaches, as pioneered by the work on Support Vector Machines
(SVMs) and other regularization based learning schemes. Duality theory has
played an important role in the development of so-called kernel machines, while
the fact of uniqueness of the optimal solution has permitted theoretical as well as
practical breakthroughs. A third main advantage of using CO tools in research
on learning problems is that it permits fast prototyping of learning algorithms
without the need for designing an appropriate training procedure explicitly. In
this special session we discuss advances and new insights in this area. This paper
restricts attention to the case of independently and identically distributed (i.i.d.)
observations. Formally, let D = {(xi, yi)}n

i=1 ⊂ R
d × R be i.i.d. samples of an

unknown underlying and fixed joint distribution Fxy.
The special session ’Convex Optimization for the Design of Learning Ma-

chines’ at ESANN 2007 is conceived much in the same spirit as [5]. This session
contains 4 contributions. In [7], this overview paper is complemented with a
review of recent advances in the use of SDP techniques in learning (especially
results of [32, 8]). The paper [2] advances research in pattern recognition with
data consisting of interval knowledge as described in [38], using an approach mo-
tivated from interval algorithmic. In [14], a fast approximation is described to
perform leave-one-out crossvalidation for model selection using the kernel probit
model. The authors of [56] reformulate the task of (kernel) canonical correlation
analysis (kCCA) which is usually solved as an generalized eigenvalue problem
as a convex SDP problem, working towards a link with the maximal margin
classifier and SVMs.

The paper is organized as follows. Section 2 discusses the close relationship
between estimation and optimization. Section 3 reviews new insights regarding
the relation of convex optimization on the one hand, and SVMs and kernel
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machines on the other. Section 4 discusses the use of convex techniques for
solving hard combinatorial problems. Section 5 gives insight and important
pointers regarding the design of appropriate solvers.

2 Convex Optimization and Estimation

Convex optimization problems are defined in general as optimization problems
in terms of a vector of unknowns x ∈ R

v which can be written as

min
x

f0(x) s.t.

{
fk(x) = 0 ∀k = 1, . . . , nK

fl(x) ≤ 0 ∀l = nK + 1, . . . , nK + nL,
(1)

where the cost function f0 : R
v → R is a convex function The equality constraints

fk : R
v → R for all k = 1, . . . , nK are linear in terms of x, and the inequality

constraints fl : R
v → R for all l = nK + 1, . . . , nK + nL are convex ([11], Sect

4.2). Among the principal advantages of such convex optimization problems
are (i) that the optimal solution takes place for a unique (or convex set of)
vector(s) x̂, and (ii) that the special structure can be exploited resulting in
highly efficient solvers. Let ’Q = QT � 0’ denote that Q ∈ R

v×v is positive
semi-definite symmetric matrix, i.e. ∀x ∈ R

v one has that xT Qx ≥ 0. Some
common standard convex programs are defined, and for each one, specialized
and highly efficient algorithms were established.

• If no inequalities occur and f0 is convex and quadratical in its argument
then the problem is referred to as a least squares problem (LS) (i.e. nL = 0
and ∃Q � 0, Q ∈ R

v×v, p ∈ R
v such that f0(x) = xT Qx + pT x + q). Such

a problem can be solved uniquely by solving a set of linear equations in
case Q is positive definite.

• If Q is not positive semi-definite, the problem is unbounded. If {fk}1≤k≤nK

and {fl}nK+1≤l≤nL are linear in the argument x, the problem is a linear
programming problem (LP).

• If both {fk}1≤k≤nK and {fl}nK<l≤nK+nL are linear in the argument x,
and f0 is quadratical (i.e. f0(x) = xT Qx+pT x with Q � 0) the problem is
a quadratical programming problem (QP). If Q is not positive semi-definite,
the problem is in general NP hard.

• If the problem contains quadratical inequality constraints, i.e. ∃R ∈
R

m×v, s, q ∈ R
m and t ∈ R such that fl(x) = ‖Rx − s‖2 ≤ qT x + t

for nK + 1 ≤ i ≤ nK + nL, the problem is an instance of a second order
cone programming problem (SOCP) [36].

• If the problem has a linear matrix inequality (LMI) in the form X �
0 (where X = XT ∈ R

v×v denotes a matrix affinely depending on the
unknowns) one has an instance of a semidefinite programming problem
(SDP) [59].
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There exist many other standard convex problems as geometric programming
(see [10] and references), semi-infinite programming, stochastic and robust pro-
gramming (see [1] and references), and parametric programming (see [26] and
references). The task of checking whether a specific optimization problem is con-
vex is in general a NP-hard problem. In [28], a principled approach is presented
to assist in the conversion of a task to a convex problem by a method called
disciplined programming, constituting of a theoretical road map and a software
tool assisting in such task.

The point of view taken in machine learning and empirical (structural) risk
minimization differs from the perspective of classical maximum likelihood tech-
niques by centralizing the concept of prediction and generalization, rather than
trying to recover the probabilistic mechanism underlying the data [60]. In the
context of empirical risk minimization and statistical learning, convexity of the
chosen loss function can be exploited to improve on the theoretical analysis, see
e.g. [65].

3 Support Vector Machines and Kernel Machines

3.1 Support Vector Machine Classifiers

The advent of large margin classifiers as the Support Vector Machine boosted
interest in the practice and theory of convex optimization in the context of
pattern recognition and the learning methodology in general, see e.g. [60, 53]. In
particular, the theory of Lagrange duality was nicely integrated with the device
of Mercer kernels in order to translate linear techniques to a context of nonlinear
estimation. For completeness, we review the by now classical derivation [18] as it
introduces principal elements of this class of techniques. Let the class of possible
outcomes of the technique (the hypothesis class) be defined as

H = {sign(wT ϕ(x)), w ∈ R
dϕ}, (2)

where ϕ(·) : R
d → R

dϕ is an a-priori fixed (for the moment) mapping of the data
to a feature space of dimension dϕ which can be potentially infinite. Remark that
we omit the intercept term b for brevity of the discussion, despite its practical
usefulness. The rule sign(wT x) obtaining the largest signed margin of a sample
(xi, yi) to the hyperplane {x; wT ϕ(x) + b = 0} - formalized as yi(w

T ϕ(xi))
‖w‖2

- is
obtained by solving the following optimization problem

max
w

min
i=1,...,n

yi(wT ϕ(xi))
‖w‖2

. (3)

This can be reformulated as a convex quadratic programming problem

min
w

1
2
wT w s.t. yi(wT ϕ(xi)) ≥ 1 ∀i = 1, . . . , n. (4)

Extension to the unfeasable case, i.e. the case where no such positive margin
exists, is formulated as follows. Let C ≥ 0 be a constant trade-off parameter.

min
w,e

1
2
wT w + C

n∑
i=1

ei s.t. yi(wT ϕ(xi)) ≥ 1 − ei, ei ≥ 0, ∀i = 1, . . . , n, (5)
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where {ei}n
i=1 is a set of so-called slack variables. This formulation is known

as the primal formulation of the support vector machine, its Lagrange dual
problem provides additional insight into the problem formulation. Let the La-
grangian be L(α, β, w, e) = 1

2wT w+C
∑n

i=1 ei −
∑n

i=1 αi

(
yi(wT ϕ(xi)) − 1 + ei

)
−∑n

i=1 βiei with positive multipliers {αi ≥ 0}n
i=1 and {βi ≥ 0}n

i=1 Now, it is
a classical result that ’minw,e maxαiβi≥0 L(α, β, w, e)’, corresponds with the so-
lution to the primal problem (5). By Slater’s condition (see e.g. [11], Chapter
5 and references) this problem is equivalent to ’maxαiβi≥0 minw,e L(α, β, w, e)’.
The first order condition for optimality ∂L(α, β, w, e)/∂w = 0 gives the equality
w =

∑n
i=1 αiyiϕ(xi); and from ∂L(α, β, w, e)/∂ei = 0 one has C = αi + βi for

all i = 1, . . . , n. Let y = (y1, . . . , yn)T ∈ {−1, 1}n be a vector. This results in
the dual problem after eliminating the primal variables w, ei and the multipliers
βi:

min
α

1
2
αT (Ω ◦ yyT )α − yT α s.t. 0 ≤ αi ≤ C ∀i = 1, . . . , n, (6)

where (Ω ◦ yyT ) ∈ R
n×n is defined as (Ω ◦ yyT )ij = ϕ(xi)T ϕ(xj)yiyj . Now

from the first order condition for optimality w.r.t. w, it turns out that one can
evaluate the optimal estimate sign(ŵT ϕ(x)) as

sign(ŵT ϕ(x)) = sign

(
n∑

i=1

αiyiϕ(xi)T ϕ(x)

)
. (7)

This reasoning results in additional insights in the structure and geometric mean-
ing of the training algorithm, as e.g. characterization of sparseness of the result
[60, 53], a geometrical interpretation in terms of the reduced convex hull as in
[39], a sensitivity interpretation of the Lagrange multipliers [41], see also [26, 11]
for a generic discussion. Observing that the optimum to (5) can be found and
can be evaluated (7) entirely in terms of the dual variables α and the inner
products ϕ(x)T ϕ(x′), allows the application of the kernel trick. Therefor, one
defines a suitable positive definite Mercer kernel function K : R

d × R
d → R

which is guaranteed to represent an innerproduct of an appropriate feature map
(or ∃ϕ : R

d → R
dϕ such that K(x, x′) = ϕ(x)T ϕ(x′)). The key motivation is

that this trick liberates one from the task to design explicitly an appropriate
feature map. In general, linear methods which permit the kernel trick as above,
result in an instance of a kernel method.

An important new direction in this research [29] is the explicit calculation of
the set of solutions (usually the regularization trade-off parameter C) which are
obtained by varying a design-parameter as in parametric programming (see e.g.
[26]). This research on the so-called regularization path (instantiated in [22]) is
a further step towards the integration of the design of learning algorithms and
algorithms for convex optimization.

3.2 Variations on the Theme

In [55], a least squares reformulation of the SVM is elaborated (Least Squares
Support Vector Machine classifier or LS-SVM classifier). The hypothesis class
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H = {sign(wT ϕ(x) + b), w ∈ R
dϕ , b ∈ R} including an intercept term is consid-

ered. The optimality behind the LS-SVM is as follows

min
w,b,e

1
2
wT w +

γ

2

n∑
i=1

e2
i s.t. yi(wT ϕ(xi) + b) = 1 − ei, ∀i = 1, . . . , n. (8)

As previously, the Lagrange dual problem can be derived, and the criterion (8)
can be optimized consequaently by solving the following linear system for the
unknowns α = (α1, . . . , αn)T ∈ R

n and b ∈ R.[
0 yT

y (Ω ◦ yyT ) + IN/γ

] [
b
α

]
=
[

0
1n

]
. (9)

Analogous to (7), the optimum to (8) can be evaluated using the solution to (9)
can be evaluated in a point x ∈ R

d as sign
(∑n

i=1 αiyiϕ(xi)T ϕ(x) + b̂
)

where α̂

and b̂ solves (9). In analogy to the least squares approach underlying a variety of
estimation problems, the above formulation was found to underly a broad range
of kernel tasks as kernel PCA, kernel CCA, and lends itselves especially as a sim-
ple and flexible formulation for modeling situations with increasing complexity
[55]. A range of formulations can be derived by choosing an appropriate convex
function L : R → R as

min
w,b,e

1
2
wT w +

γ

2

n∑
i=1

L(ei) s.t. yi(wT ϕ(xi) + b) = 1− ei, ∀i = 1, . . . , n. (10)

The standard SVM can be recovered by choice of the Hinge function L(e) =
(1 − e)+ (with (z)+ returning the positive part of its argument). The L2-SVM
as formulated in [60] takes L(e) = (1−e)2+. This generic formulation in terms of
L attracted especially interest in a context of reproducing kernel Hilbert spaces,
see e.g. [24]. Discussion of a variety of convex choices for L was given in [65].

In the ν-SVM as introduced in [50, 52] and further discussed in [12], the
following objective is proposed

min
w,b,ρ,e

1
2
wT w − νρ + C

n∑
i=1

ei s.t. yi(wT ϕ(xi) + b) ≥ ρ − ei, ei ≥ 0, ρ ≥ 0 ∀i,

(11)
where from the conditions for optimality it follows that ν is an upper-bound to
the fraction of training (margin) errors. Moreover, ν is a lower-bound on the
number of support vectors (i.e. the number |{αi > 0}i|). This mechanisms allow
for a further integration of results in learning theory employing a compression
argument with the practice of SVMs. In addition to the aforementioned formu-
lations, there exists a range of different methods as kernel fisher discriminant
analysis, and a class of methods based on (penalized) maximum likelihood. Ker-
nel logistic regression [66] is amongst the most popular of those, and can be cast
as a convex geometric programming problem [10], but as well the kernel probit
model [14] is advantageous in many cases.
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Different variations on the themes were proposed for handling multiclass
classification tasks, where the output could take a different label y ∈ {1, . . . , D}.
A classical approach uses multi-class encoding schemes, but more direct for-
mulations were also framed as a convex optimization problem, including [19].
Recently [63] rephrases the multiclass SVM as an SDP, allowing for a straight-
forward extension to the semi- or unsupervised case. Ordinal regression handles
the case where the outputs y ∈ {1, . . . , D} have an ordering, but have no asso-
ciated metric. This task were cast in the framework of SVMs as in [31, 17, 25].
Here the key issue is that any two sample points have an intrinsic order which is
to be predicted accurately with the learning machine. In particular [31] reframes
the problem as a regular SVM where a samples x is replaced by a couple of sam-
ples (x, x′) with corresponding output y indicating whether x is preferential over
x′ or vice versa. Optimizing the related area under the ROC (Receiver Operator
Characteristics) curve is described e.g. in [15].

Recent advances were made towards the formulation and analysis of learning
machines for dealing with structured input- as well as structured output data.
Structured input data (i.e. data which do not necessary have a natural em-
bedding in an Euclidean space) are classically dealt with by the adoption of a
proper kernel function (see e.g. [53] and references). Learning and prediction in
the context of structured outputs is tackled in a variety of ways, see e.g. [48]
A specific case is found in learning based on observational data with specific
structure includes the cases where (a) data in the form of intervals is available
[38, 2], (b) data is known to be perturbed [33] using robust programming [1],
and (c) input observations contain missing values [42].

3.3 Regression

This subsection reviews a number of popular approaches to function approxima-
tion and regression based on the methodology of SVMs. The following formula-
tion extends the method of SVMs to the regression case (SVR)[60]

min
w,b,e

1
2
wT w+

C

2

n∑
i=1

ei s.t. −ε−ei ≤ wT ϕ(xi)+b−yi ≤ ε+ei, ei ≥ 0 ∀i = 1, . . . , n.

(12)
Arguably more natural is the use of a least squares loss, its extension towards
ridge regression and smoothing splines, or a dual kernel ridge regression [49],
and embodied in a context of LS-SVMs where L is the convex squared loss:

min
w,b,e

1
2
wT w +

C

2

n∑
i=1

L(ei) s.t. wT ϕ(xi) + b − yi = ei, ∀i = 1, . . . , n (13)

A robust version for handling outliers using Huber’s loss function is described
in [37]. A variation on the same theme is found in the estimation of linear
and kernel based quantile regression as in [34], which targets the conditional
quantile functions of a joint distribution, generalizing the conditional mean (as
in regression).
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3.4 Unsupervised and Semi-supervised Learning

While previous subsections discuss in general the case where one wants to learn
a relation between two random variables (x, y) given a sample {(xi, yi)}n

i=1 (the
so-called supervised case), convex optimization techniques become also pervasive
in the unsupervised case where the overall goal is to find ’structure’ in the data
{xi}n

i=1 without referring to a specific output variable. In [45], a method based
on L1 estimation and the regularization path was presented to cast methods as
k-means and hierarchical clustering as a convex problem which can be solved
using a QP.

One of the earliest extensions of the methodology of SVMs towards unsu-
pervised learning was support vector clustering [4] and [62]. In the formulation
of support vector data description (SVDD) [57] finding the minimum radius hy-
persphere enclosing the most part of the data, and in the one-class SVM [51],
one tries to recover clusters in the data by separating the data in a feature space
from the origin, see also [53]. In maximal margin clustering [63], one tackles the
combinatorial problem of recovering a labeling of the data realizing a maximal
margin using an SDP relaxation.

In [20], an SDP approach was given for detecting the structure in data much
alike principal component, but additionally realizing sparseness in the result
resulting in interpretability of the result as well as computational advantages
(’sparse PCA’). In [56], a reformulation of CCA is given in terms of an SDP, and
the relation with a maximal margin classifier as the SVM was given.

The task of semi-supervised learning [60] amounts to learning a classification
rule where one aims at optimizing the generalization performance using unla-
beled datasamples besides the given labeled training set. In general, the problem
boils down to a combinatorial problem, but convex relaxations were devised us-
ing SDP programs as in [8], much in the same spirit as the seminal paper [27]
devising an SDP relaxation for the NP hard MAXCUT problem with statistical
guarantees on the approximation. In [63], an SDP approach to an unsupervised
SVM formulation is discussed. In co-training and SVM-2k one extends this
approach by exploiting the extra information available in the data as multiple
views of the same unlabeled data reflect the desired classification. Transductive
inference [60] amounts to finding an optimal classifier for the case one knows be-
forehand on which points the classifier is to be evaluated. It was conjectured [60]
that this task is formally ’less complex’ than the inductive case were a classifier
is to be learned for general future use. The relation of problems of transductive
inference on graphs was related to the classical MAXFLOW-MINCUT algorithm
(which is a special case of a linear program) [9]. A similar task is studied in [43]
where a linear programming relaxation was used for transductive inference over
a weighted graph.

3.5 Model Structures and Prior Knowledge

A fundamental advantage of the methology of converting learning tasks into
standard convex optimization problems is that the incorporation of more refined
model structures or structural prior knowledge can be introduced into an specific
formulation straightforwardly. Additive models consisting of d > 0 components
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take the following form

f(x) =
d∑

l=1

wT
l ϕ(xl), (14)

where xl denote the lth feature of x. This model class is naturally approached
from a RKHS perspective as in [61], or from an optimization context as in
[41] where in both cases the relationship with the superposition of kernels is
made explicit. From a statistical perspective, (generalized) additive models are
discussed in [30]. Extensions were also described for learning semiparametric
models taking the form f(x) = wT ϕ(x) +

∑L
l=1 blx

l with parameters {bl}L
l=1,

see e.g. [54, 41]. The case were the additive noise in the regression case takes
a prespecified coloring scheme was delt with in [23], and the relation of the
coloring scheme with the design of the kernel was further made explicit in [41].
Other cases where the prior structural knowledge is imposed on the learning task
is considered in [37] (for structural inequalities), and in [41] (for monotonicity
constraints).

3.6 Input Selection and Model Selection

Problems of model selection constitute one of the major research challenges in the
field of machine learning and pattern recognition. Except for the formulation of
a proper model selection criterion, a main concern - at least in practice - is to find
a good procedure for the selection of design-parameters (or hyper-parameters)
optimally with respect to the model selection criterion. We start the discussion
with the largely unsolved problem of input selection. Here one tries to find a
subset of the features {1, . . . , d} which are significant for the task at hand. In the
context of empirical risk minimization, one often resorts to the weaker problem
of trying to find a (small) subset of inputs which make up a classifier which
predicts (almost) as good as a black-box model. An interesting convex approach
was found in the use of the convex L1 norm resulting in sparseness amongst
the optimal coefficients. This sparseness is then interpreted as an indication of
non-relevant features. The LASSO [58, 22] was amonst the first to advocate this
approach, but also the literature on basis pursuit [16] and compressed sensing
[21] employs a similar strategy. In [6], a SOCP was emploid for the sake of
feature selection in a linear model.

In the techniques for learning the kernel instantiated in [32] one translates the
positive-definite restriction of an appropriate Mercer kernel in a positive definite
constraint of the kernel matrix, resulting in an SDP. The problem of choosing a
(subset of) a set of kernels appropriate for a learning task can be tackled in a
variety of ways as e.g. described in [40] (giving a theoretical account), [3] (using
SOCPs), and [41] (using a QP).

The task of evaluating fastly the model selection criterion of leave-one-out
crossvalidation received considerable attention. It was shown that computation
could be performed efficiently using the Sherman-Morrison-Woodbury formula,
as in [13] (for LS-SVM regression). In [44], the authors propose an alterna-
tive scheme for parametrizing the regularization trade-off, resulting in a convex
problem of setting this trade-off with respect to a model selection criterion as
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crossvalidation. In the follow-up paper [46], a convex approach towards setting
the regularization parameter in schemes as ridge regression, smoothing splines
and LS-SVMs is discussed.

4 Generic and Task Specific Solvers

To make the discussion complete, we provide some pointers to relevant literature
giving insight in the problem of solving a convex optimization problem. Research
on efficient solvers for generic convex optimization constitute a broad research
area. Solver procedures for convex problems with inequality constraints can
roughly be classified as primal-dual methods, interior-point methods, active set
methods and many others, see e.g. [11] for a review. This research culminated
in a set of highly efficient (commercial) general purpose software tools including
CPLEX, MOSEK, LOQO or SeDuMi.

The success of kernel machines as SVMs incurred a surge of literature dis-
cussing routines for optimizing a convex optimization having a task-specific
structure. In particular, the case of QPs with a quadratical objective function, a
set of box-constraints and a single equality constraint solving an SVM is investi-
gated thoroughly, resulting in fast and efficient routines. A major class constitute
of the so-called decomposition techniques as instantiated in [47]. Those method
exploit the sparseness in the QP much similar in spirit as the active set solvers,
for a discussion see e.g. [35] who implemented the technique in one of the most
popular software tools LIBSVM. Other software tools include SVMlight or Torch.
Of importance is the numerical stability of the algorithms (in terms of general-
ization of the result) speed of convergence and memory requirements. A critical
point in implementations concerns the choice of an appropriate stopping crite-
rion, see e.g. [35]. Approaches for solving SVMs for huge sized datasets were
described in [64], while advances for efficiently solving L1 based formulations as
the LASSO were described in [29]. In the case of LS-SVMs where the solution
is given by a linear system, an accurate and numerical robust procedure was
found in a conjugate gradient approach as described in [55]. This approach was
implemented in the toolbox LS-SVMlab.

5 Conclusion

This paper1 reviewed recent advances on the interplay between convex optimiza-
tion and the design of learning machines, and focussed in particular on SVMs
and kernel machines.
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