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Abstract. Intrusion detection is a problem that has attracted a great
deal of attention from computer scientists recently, due to the exponential
increase in computer attacks in recent years. DARPA KDD Cup 99 is a
standard dataset for classifying computer attacks, to which several ma-
chine learning techniques have been applied. In this paper, we describe
the results obtained using functional networks – a paradigm that extends
feedforward neural networks – and compare these to the results obtained
for other techniques applied to the same dataset. Of particular interest is
the capacity for generalization of the approach used.

1 Introduction

A computer intrusion is a set of actions that violate the security of a system. Such
a situation must be detected and corrected in order to guarantee the integrity,
confidentiality and/or availability of computing resources. Intrusion detection
systems (IDS) have been designed that complement other security measures
based on attack prevention (firewalls, antivirus, etc.). The aim of an IDS is to
inform the system administrator of any suspicious activities and to recommend
specific actions to prevent or stop the intrusion (for example, close network ports,
kill doubtful processes, etc.). In order to be able to implement these actions, the
IDS must, among other tasks, analyze network traffic data in order to determine
whether there is evidence of an attack, or whether the data are anomalous with
respect to normal traffic. Ideally, the system should be sufficiently generalized
to be able to detect any type of attack yet maintain a low false positive rate.
The false positive measure is of great importance in determining the quality of
an IDS system [11].

There are two basic intrusion detection systems: misuse detection and anom-
aly detection ([7] [1]). Misuse detection systems attempt to match computer
activities with previously known attacks in their database. An important draw-
back of this type of system is that it can only detect known attacks, so attacks
that are not stored or variants of stored attacks will not be detected. Anomaly
detection systems learn the normal activity of the system and attempt to detect
any computer activity that deviates from normal patterns. The problem here
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is that too broad or too narrow training can result, respectively, in high false
negative or false positive rates. In our approach, we implemented an anomaly
detection method with a view to raising the efficiency of the systems already
reported in the literature.

There are two main ways to retrieve data for constructing an IDS. The first
one consists of implementing a network simulation and recovering relevant data.
This approach has drawbacks in regard to simulating a real network with hun-
dreds of computers, comparing the results obtained with other authors´ re-
sults, and emulating real traffic networks. An alternative is to employ standard
datasets available for this area. For this work we used the KDD Cup 99 dataset
[5].

Several approaches to the IDS problem have been reported in the literature,
such as artificial neural networks [7]; kernel-based methods, Support Vector
Machines (SVM), and variants based on each [3] [4] [8], etc. Functional networks
are a generalization of neural networks that have also been successfully applied
to a range of different problems [10]. In this work, this is the paradigm applied
to the KDD Cup 99 dataset problem. We describe our results and compare them
to the results obtained by other authors and by the KDD Cup 99 competition
winner.

2 Material and Methods

2.1 The KDD Cup 99 dataset

The KDD Cup 99 dataset, which derives from the DARPA dataset [6], was used
for the 1999 KDD (Knowledge Discovery and Data Mining Tools Conference)
Cup Competition [5]. Each record representing a TCP/IP connection is com-
posed of 41 features that are both qualitative and quantitative in nature [9].
The dataset used in our study is a smaller subset of the original training set
which was unwieldy to work with as it contains almost 5 million input patterns.
For the sake of comparison with other authors’ results [3], two subsets were ex-
tracted from this larger training set: a set of 46093 patterns for training and
a set of 447927 patterns for validation. These subsets were selected in such a
way that the distribution of attacks were the same as in the original DARPA
dataset. Although the model training set was but a small part of the avail-
able data, we observed no significant degradation in generalization performance
which would indicate inadequate dataset size. For the test set we used the orig-
inal KDD Cup 99 dataset containing 331029 patterns. Around 20% of the three
sets were normal patterns (no attacks). As for attack patterns, four categories
were identified:

• Denial of Service (DoS) attacks, which prevent a computer from complying
with legitimate requests by consuming its resources.

• Probe attacks, which are scanning and polling activities that gather infor-
mation on vulnerabilities for future attacks.
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Type % Training and Validation Sets % Test Set
Normal 19.69 19.48
DoS 79.24 73.90
Probe 0.83 1.34
R2L 0.23 5.21
U2R 0.01 0.07

Table 1: Percentage distribution of normal activities and different kinds of at-
tacks in the KDD Cup 99 training, validation and test datasets.

• Remote-to-local (R2L) attacks, which are local non-authorized access at-
tempts from a remote machine.

• User-to-root (U2R) attacks, which have the goal of obtaining illegal or
non-authorized super-user or root privileges.

The training, validation and test set percentages for normal activities and for
the four attack types are shown in Table 1.

2.2 Preprocessing

From the KDD Cup 99 intrusion detection dataset, 41 features were derived to
summarize each connection information. In order to train an architecture, sev-
eral data enumeration and normalization operations were necessary. As a first
approach, symbolic variables in the dataset were enumerated and all variables
were normalized. Thus, each instance of a symbolic feature was first mapped
to sequential integer values. The data was then normalized to ensure that no
input vector component has an overwhelming influence on the training result.
Standard [0..1] normalization was used for this research. However, some numer-
ical features of the connection feature vector (such as connection duration, total
bytes set to destination/source host) had dynamic range values. After a detailed
analysis normalization was performed for intervals.

2.3 Functional Networks

Functional networks are a generalization of neural networks that combine both
knowledge about the structure of the problem and data: the former determines
the architecture of the network, and the latter estimates the unknown functional
neurons [10]. There are important differences between neural and functional
networks, however. One of the most significant differences is that, in functional
networks, weights are incorporated into the neural functions (f, g, h and p in
Figure 1). These neural functions are unknown functions (from a given family
of functions, e.g. polynomial or Fourier) to be estimated during the learning
process. For example, the neural function f might be approximated by:

f(x1) = c0 +
mi∑

i=1

cix
i
1 or f(x1) = c0 +

mi∑

i=1

(c2i−1)sin(ix)+ c2icos(ix) (1)
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and the parameters to be learned will be the coefficients c0 and ci. As each
neural function is learnt, a different function is obtained for each neuron. The
architecture of the network, moreover, is derived from the known properties of
the data, normally, by applying functional equations [10]. In the KDD Cup 99
dataset, there was not enough information to obtain this architecture. Hence,
as a first approximation a simple but powerful model was selected, namely the
associativity model depicted in Figure 1.
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Fig. 1: The generalized associativity functional network.

3 Results and Discussion

There are a number of function families that can be used for the neural functions
in a functional network model. For our research we considered polynomial,
Fourier and exponential functions. After several trials it was found that the
best approach was one in which five functional networks were developed (in
which mi = 3 in equation 1), one for each of the classes in Table 1. The overall
output of the system corresponded to the functional network with the highest
output.

Tables 2 and 3, respectively, show the results obtained for the validation and
test sets. For the sake of comparison, the metrics used by other authors [3], were
used. The first three columns in each table correspond to binary classification
results (obtained by grouping the four attack types in one class and the normal
patterns in another class). As for the columns Error shows the overall percentage
error rate for the five categories (normal patterns plus the four attack types),
Det shows the overall percentage of attacks detected, and FP shows the false
positive rate, defined as the proportion of normal patterns erroneously classified
as attacks. The last four columns in each table show correct detection (Det)
classification percentages for each of the four attack types. The first three lines
in each table show results for our proposed method, while the remaining lines
show results obtained by other authors (see [3]), specifically, for different SVM
models, ANOVA (ANOVA ens.), and linear perceptrons (Pocket 2cl. and Pocket
mcl.). Finally, the results obtained for the KDD Cup 99 competition winner are
reproduced in the fourth line in Table 3.

As can be seen from Tables 2 and 3, the functional networks had lower error
rates and lower false positive rates. In the case of the validation set, the results
were poorer or similar to those reported by other authors. However, for the test
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Method Total DoS Probe R2L U2R
Error Det FP Det Det Det Det

5FNs poly 0.27 99.83 0.51 99.86 94.94 92.36 61.54
5FNs fourier 0.28 99.83 0.54 99.86 95.33 92.98 73.08
5FNs exp 0.28 99.83 0.55 99.86 95.37 92.90 73.08
SVM Linear 0.17 99.89 0.39 99.98 98.21 79.11 10.00
SVM 2poly 0.08 99.93 0.11 99.99 98.40 88.27 2.00
SVM 3poly 0.08 99.94 0.15 99.99 98.43 91.35 6.00
SVM RBF 0.07 99.94 0.11 99.99 99.06 90.02 20.00
ANOVA ens. 1.07 98.67 0.02 99.18 77.65 0.93 2.00
Pocket 2cl. 1.31 98.40 0.06 99.33 35.71 3.81 2.00
Pocket mcl. 0.20 99.89 0.56 99.96 98.54 83.95 20.00

Table 2: An overview of the results (in %) obtained for the validation dataset.

Method Total DoS Probe R2L U2R
Error Det FP Det Det Det Det

5FNs poly 6.48 92.45 0.86 96.77 85.96 29.43 8.33
5FNs fourier 6.69 92.72 0.75 96.86 85.74 23.75 10.97
5FNs exp 6.70 92.75 0.75 96.85 85.60 23.77 13.60
KDD Winner 6.70 91.80 0.55 97.69 87.73 10.26 26.32
SVM Linear 6.89 91.83 1.62 97.38 81.76 16.55 21.93
SVM 2poly 6.95 91.79 1.74 97.41 86.44 14.74 1.75
SVM 3poly 7.10 91.67 1.94 97.62 88.45 9.35 2.63
SVM RBF 6.86 91.83 1.43 97.30 79.26 18.29 25.88
ANOVA ens. 6.88 91.67 0.90 97.64 87.52 8.51 53.94
Pocket 2cl. 6.90 91.80 1.52 97.40 85.84 14.77 29.82
Pocket mcl. 6.93 91.86 1.96 97.65 86.79 11.45 54.38

Table 3: An overview of the results (expressed in %) obtained for the test dataset.

set, the functional networks obtained a lower error rate – lower even than the
KDD Cup 99 competition winner error rate. This interesting result highlights
the generalization capacity of our system – a fact which is particularly relevant
to our problem, given that the test and validation datasets are quite different
(see Table 1); leaving aside distribution differences, the test dataset contains new
attacks not included in the training and validation sets. Correct classification
of R2L and U2R attacks is very difficult, because the model underlying both
is very different from that of the other two attack types, as discussed in [12].
This is evident in the results obtained, which show a dramatic drop in quality
between the validation and test datasets. Our model attempts to overcome this
problem by using five different functional networks, one for each class in the
dataset. Consequently, our method exhibits better generalization behavior than
the other methods.
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4 Conclusions

The results obtained by our new approach to the problem of intrusion detection,
based on functional networks, revealed a good capacity for generalization. Gen-
eralization is a problem that is difficult to handle in the KDD intrusion detection
dataset, due to differences between validation and test datasets. Comparing our
results with other approaches – including with the KDD Cup 99 competition
winner results– we obtained a better attack detection rate and a lower error rate
for the test set. However, our false positive rates were higher than those for
the KDD Cup 99 competition winner, although much better than those for the
other methods analyzed.

In future research, we plan to consider more complex functional networks
models; for example, such as models that take into account relationships between
features. We also plan to construct a mixture of experts model, in which the
most suitable model would be employed in each classification problem in order
to improve the overall performance of the system.
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