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Abstract. Discovering the topology of a set of labeled data in a Eucli-
dian space can help to design better decision systems. In this work, we
propose a supervised generative model based on the Delaunay Graph of
some prototypes representing the labeled data.

1 Introduction

Basic supervised learning problems involve a given set of M labeled training data
{xi, ci|i = 1, ...,M}, where xi ∈ R

D is a ”feature” vector and ci ∈ {1, ...,K} is its
associated class label. The ultimate goal of classification problems is to design a
classifier which predicts the class of new feature vectors with a minimum error
rate. However, prediction is only the last step of the learning process, which can
be enriched through the exploratory analysis of the data, and specifically the ex-

traction of the topology of the classes. Indeed, several topological characteristics
of the classes could be useful among which: (1) their connectedness to evaluate
the complexity of the classification problem [1]; (2) their intrinsic dimension to
select relevant features [2]. In order to extract this topological information, we
first assume that the data are drawn from some labeled principal manifolds [3]
corrupted with some additive noise. One way to capture the structure of the
data is to model their distribution in terms of latent or hidden variables [4].
The main generative models dealing with unsupervised manifold learning are
the Generative Topographic Mapping [4] and the Probabilistic Principal Compo-

nent Analyzers [5]. In the first approach, the intrinsic dimension is fixed a priori
allowing visualization, while in the second approach, the intrinsic dimension is
captured but the connectedness is lost. In order to overcome these limits, an-
other generative model is proposed in [6] which is based on the Delaunay Graph
(DG) of some prototypes representing the data. This model, called Generative

Gaussian Graph (GGG), assumes no a priori about the topology and allows to
learn the connectedness of sets of points. We propose to extend the GGG to the
supervised case in order to extract the topology of the classes. We observe that
the GGG can be viewed as a generalization of a Gaussian Mixture model (GM)
and that the GM has been transposed to supervised learning [7]. Our approach
uses the same path to extend the GGG to the supervised case.
Section 2 briefly reviews the GM and its supervised version as well as the GGG.
In section 3, we introduce the new algorithm allowing to represent the topology
of a labeled data set. Then we test it on artificial and real data in section 4,
before the conclusion in section 5.
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2 State of the art

2.1 The Gaussian Mixture

Mixture modeling can be regarded as a flexible way to represent a probability
density function with a parametric model. A normal mixture density is defined
by a finite weighted sum of Gaussian components having the following form :
p(x|π,w,Σ) =

∑N

j=1 πjgj(x|wj ,Σj) where N is the number of components, gj

is a gaussian density with mean wj and covariance matrix Σj ∈ Σ. πj ∈ π
is the probability that an observation belongs to the jth component such that
πj ≥ 0 and

∑M

j=1 πj = 1. This model can be viewed as a 2-step data-generating
process: (step 1) drawing of the component j with a probability πj ; (step 2)
drawing of the data following the density gj of the component j. Therefore in
this model, the principal manifold is assumed to be a set of points w, having
been corrupted with additive Gaussian noise gj to lead to the observed data.
In the context of supervised learning, Miller and Uyar [7] suggest to learn the
allocation of the mixture components to the classes during the training. They
introduce an additional parameter βcj ∈ β to the GM, which represents the
conditional probability of assigning the mixture component j to the class c.
Moreover, since the components are common to the different classes, the model
allows to represent easily a possible common structure for the different classes
(e.g. high overlapping of the classes). The model, called Generalized Gaussian

Mixture (GGM), takes the form: p(x, c|π, β, w,Σ) =
∑N

j=1 πjβcjg(x|wj ,Σj) with

the new constraints βcj ≥ 0 ∀j, c and
∑K

c=1 βcj = 1 ∀j.

2.2 The Generative Gaussian Graph

In this section, we use the same notations as provided in [6]. The GGG as-
sumes that the data are generated by some points and some segments con-
stituting the principal manifolds that have been corrupted with an additive
spherical Gaussian noise with zero-mean and unknown variance σ2. The under-
lying model is based on two Gaussian elements, namely the Gaussian-points

and the Gaussian-segments which define a Gaussian mixture model. Given
a set of N0 prototypes w located over the data distribution using a vector
quantization technique, the Delaunay Graph (DG) of the prototypes is con-
structed. With a weighted sum of N0 vertices and the N1 edges of the DG,
convolved with an isotropic gaussian distribution with variance σ2, the data
generation process can be seen as a generalization of a usual gaussian mix-
ture model and is defined by: p(xi|π,w, σ,DG) =

∑1
d=0

∑Nd

j=1 πd
j gd(xi|j, σ),

where π0
j (resp. π1

j ) is the probability that a datum xi was drawn from the
Gaussian-point associated to wj (resp. the Gaussian-segment associated to the
jth edge of DG). The density at point xi involved by the jth Gaussian-point
and the jth Gaussian-segment [waj

, wbj
] of length Lj are respectively defined as:

g0(xi|j, σ) = 1
(2πσ2)D/2 exp(

−(xi−wj)
2

2σ2 ) and g1(xi|j, σ) = 1
Lj

∫ wbj

waj

g0(xi|w, σ)dw.
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3 The Supervised Generative Gaussian Graph

In this paper, the data are assumed to be generated by some points and some
segments constituting the principal manifolds and then to be corrupted with an
additive spherical Gaussian noise with zero-mean and unknown variance (i.e.
Σ = σ). Moreover, we assume that the jth Gaussian element of dimension
d (written (d, j)) can generate data from K different classes c with respective
probabilities βd

cj . Thus, we define the following model : p(x, c|π, β, w, σ,DG) =
∑1

d=0

∑Nd

j=1 πd
j βd

cjg
d(x|j, σ) , such that βd

cj ≥ 0,
∑K

c=1 βd
cj = 1 ∀j, ∀d and πd

j ≥ 0

and
∑1

d=0

∑M

j=1 πd
j = 1.

3.1 The four-step learning process

1. Initialization : Given a set of prototypes w located over the data distri-
bution using a GGM with identical variances and the EM algorithm [7], the
DG of the prototypes is constructed and defines the initial graph. Then each
edge and each vertex of the graph is the basis of a generative model so that
the graph generates a mixture of Gaussian density functions. The priors π are
initialized to give equiprobability to each vertices and edges. The parameter
β0 is initialized with the value obtained by the GGM while each component of

β1 is set to 1
K

. Finally, we initialize σ with the noise value obtained by the GGM.

2. Learning of the parameters : The learning objective was chosen to
be the joint likelihood over the observed labeled data. This measure of quality
wrt the parameters of the model is defined as: L =

∏M

i=1 p(xi, ci|π, β, w, σ,DG).
In order to maximize the likelihood we use the EM algorithm. The EM algo-
rithm consists in tmax iterative steps updating π, β, σ which ensure the increase
of the likelihood. The updating rules take into account the constraints about
positivity or sum to unity of the parameters:

π
d[new]
j = 1

M

∑M

i=1 p(d, j|xi, ci)

σ2[new] = 1
DM

∑M

i=1[
∑N0

j=1 p(0, j|xi, ci)(xj − wi)
2

+
∑N1

j=1 p(1, j|xi, ci)
(2πσ2)−D/2 exp(−

(xi−qi
j)2

2σ2 )(I1[(xi−qi
j)

2+σ2]+I2)

Lj ·g1(xi|j,σ) ]

β
d[new]
cj =

∑M

i=1:ci=c p(d, j|xi, ci)/
∑M

i=1 p(d, j|xi, ci)

(1)

with I2 = σ2
(

(Qi
j−Lj) exp(−

(Qi
j−Lj)

2

2σ2 )−Qi
j exp(−

(Qi
j)

2

2σ2 )
)

,

I1 = σ
√

π
2 (erf(

Qi
j

σ
√

2
) − erf(

Qi
j−Lj

σ
√

2
)), where Qi

j =
〈xi−waj

|wbj
−waj

〉
Lj

,

qi
j =waj

+(wbj
−waj

)
Qi

j

Lj
and p(d, j|xi, ci) =

πd
j βcijgd(xi|j,σ)

p(xi,ci|π,β,w,σ,DG) is the posterior prob-

ability that the datum xi was generated by the component (d, j).

3. Prunning : Finally, to get the supervised topology representing graph
from the generative model, we prune from the initial DG the edges for which
there is no chance they generated the data, i.e. edges having a null or an almost
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null prior at the end of the learning process: π1
j < ε. At that point, the edges

represent the connectedness of the joint density of all the classes.

4. Model selection : In statistical inference from data, selecting a parsi-
monious model among a collection of models is an important but difficult task
[8]. The complexity of the Supervised Generative Gaussian Graph (SGGG)
is defined by its number of vertices and edges. Since the complexity of our
model is closely related to the number of prototypes, we choose the best GGM
in the sense of the Bayesian Information Criterion (BIC) [8] to build the ini-
tial DG. Thus we select the GGM M with N0 components which maximises
: BIC(M) =

∏M

i=1 p(xi, ci|πM, βM, wM, σM) − vM

2 log(M) where vM is the
number of free parameters of M : vM = N0.(K + D)

4 Experiments

We drawn a 2-D data sample from a set of class-manifolds : two quarter-
circles, one ’Y-shaped manifold’ and one point with respective probabilities
{0.2; 0.2; 0.5; 0.1} and β = {(1, 0), (0.5, 0.5), (0, 1), (1, 0)}. The observed data

are obtained with an additive gaussian noise with mean 0 and variance σ2 and
are represented in the figure 1 (a). We use an artificial data-base from which we
know the topology in order to verify the validity of the model.
For all the experiments we use the same parameter values : tmax = 100, ε = 0.01.
Figure 1 (b) shows that the SGGG allows recovering the topology of the four
manifolds wrt the class-label while the GMM (figure 1 (d)) does not give us any
insight about the connectedness of the classes. Moreover, the SGGG informs
us about the class-manifold overlapping thanks to the paramater β: a manifold

overlapping of different classes is caracterized by max
c

(βd
cj) 6= 1.

Figure 2 describes an experiment where we want to verify the ability of the
SGGG to learn the topology of a labeled data set in various noise conditions.
We drawn 30 different training sets for several variances of the noise. We use
the learning process described in section 3 to build the SGGG and we extract
the topological characteristics of the model (number of connected components,
degree of the vertices). Then, we compare the topology of the model with the
original topology of the set of manifolds : for example, we check that the part of
the model representing the ’Y-shaped manifold’ is a set of connected single-class
edges (i.e. max

c
(β1

cj) = 1) such that two vertices have a degree equal to 1 (the

extreme points of the ’Y’), one has a degree equal to 3 (the crossing of the ’Y’)
and all the other vertices have a degree equal to 2. We observe (figure 2) that
the model can recover the good topology wrt to the classes for the quarter-circles
and the point even with high noise variance. However, the ’Y-shaped’ is often
modeled by a ’V-shaped’ when the noise variance increases. With noisy data,
the accuracy of the model decreases but it is still relatively robust.
We also tested the SGGG on real data. Figure 3 represents the natural and
artificial seismic events in France in 2000 and the resulting SGGG.
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Fig. 1: Principle of the Supervised Generative Graph. We drawn 1000 data
from the four principal manifolds (drawn figure 1 (d)) corrupted with an additive
gaussian noise with variance σ2 = 0.81. First and second classes are respectively
represented by ’black +’ and ’grey o’. The top left quarter-circle is mixed ’+’ and ’o’, the
right one and the point are ’o’ and the Y-shaped is ’+’. (a) The prototypes are located
with a GGM (identical variances) and the EM algorithm. They are connected with
edges from the Delaunay graph. (b) The optimal SGGG obtained after optimization
of the likelihood according to σ, β and π and pruning of the edges associated to a
null or almost null prior. The edges representing only one class (resp. several classes),
i.e maxc(β

d
cj) = 1 are in black (resp. dotted) lines. (c-d) Iso-density curves at values

(0.0005, 0.001, 0.05, 0.01) for each class given by the SGGG and the best GGM (free
covariances) which has been selected with the appropriate BIC criterion. The estimated
variance of the noise σ̂2 by the SGGG is equal to 0.98. The variance is over estimated
because non linear manifolds are approximated by piecewise linear manifolds. In order
to evaluate the accuracy of the generative model SGGG, we estimated the Normalized
Negative Loglikelihood (NNL) on an independent sample of 5000 data for both models
: NNLSGGG = 5, 0154 and NNLGMM = 5, 5447.
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Fig. 2: SGGG with various noise conditions: The noise variances are set to
σ2 = 0.25, 1, 2 and 3. The figures represent one data set over the 30 different data set
which have been randomly drawn for each noise value. The results are given in percent
and represent the number of models which have correctly modeled the four principal
manifolds (the top-left quarter-circle, the top-right quarter-circle, the ’Y-shaped’ and
the point).
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Fig. 3: Seismic data:(left) Natural (grey ’o’) vs Artificial (black ’x’) seismic events
of magnitude greater than 2.0 in France or close of its border. (right) The resulting
SGGG obtained. The edges representing only one class (resp. several classes) are in
continuous (resp. dot) lines. We can see in particular that the SGGG represents the
mountain chains (the Alpes and the Pyrénées) with some Gaussian-segments. We keep
working on this model to take into account the background noise in order to improve
the results.

5 Conclusion

Extracting the topology of a set of a labeled data is expected to provide im-
portant information in order to design a better decision system. Following the
principle of the Generalized Gaussian Mixture [7], we propose to extend the
Generative Gaussian Graph [6] to the supervised case in order to extract the
topology of labeled data sets. The graph obtained with the Supervised Gen-
erative Gaussian Graph represents the connectedness of the joint density of all
the classes from which we can learn about the intra-class and the inter-class

connectedness and the manifold-overlapping of the different classes.
One way to follow this work is to build a 2-D graph allowing to synthetize this
extractible topological information [1].
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