
The Recurrent Control Neural Network

Anton Maximilian Schaefer1,2, Steffen Udluft1, and Hans-Georg Zimmermann1

1- Siemens AG, Corporate Technology, Department Learning Systems,
Otto-Hahn-Ring 6, D-81739 Munich, Germany

2- University of Osnabrueck, Neuroinformatics Group,
Albrechtstraße 28, D-49069 Osnabrueck, Germany

Abstract. This paper presents our Recurrent Control Neural Network
(RCNN), which is a model-based approach for a data-efficient modelling
and control of reinforcement learning problems in discrete time. Its archi-
tecture is based on a recurrent neural network (RNN), which is extended
by an additional control network. The latter has the particular task to
learn the optimal policy. This method has the advantage that by us-
ing neural networks we can easily deal with high-dimensions or continuous
state and action spaces. Furthermore we can profit from their high system-
identification and approximation quality. We show that our RCNN is able
to learn a potentially optimal policy by testing it on two different settings
of the mountain car problem.

1 Introduction

Reinforcement learning (RL) problems basically consist of an agent and an en-
vironment, with which the agent interacts by carrying out different actions. For
each interaction the agent gets a reward, which is used to optimise its policy, i.e.,
its future actions based on the respective states. Low dimensional and discrete
RL problems are generally solved by table-based methods, where the value of
each state-action-combination is stored [1]. For continuous state or action spaces
these methods become unfeasible. In those cases an optimal system identification
of the underlying dynamics and a good generalisation are of avail.

In this paper we present our Recurrent Control Neural Network (RCNN),
which is a new model-based approach. Its essential part consists of a recurrent
neural network (RNN) with dynamically consistent overshooting [2]. We extend
it by an additional control neural network with the particular task to learn the
optimal policy of the RL problem. Furthermore we adapt its structure to the
RL environment by adding action and reward clusters.

There have already been a few attempts to combine RL with different kinds
of recurrent neural networks, e.g. [3, 4]. Schmidhuber’s approach [3] is most
similar to ours, but still differs substantially in the neural network model and
the algorithm used. Besides that, none of the existent approaches offers, in
architecture, equations, and algorithms, the same flexibility and a comparable
explicit resemblance to RL [5].

We test the RCNN on two different settings of the well-known mountain-car
problem [1]. Near-optimal solutions have been reported in [6] and [7]. We show
that our RCNN outperforms those and is even as good as a manually tuned
potentially optimal one.

319

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



2 Recurrent Control Neural Network

The Recurrent Control Neural Network (RCNN) is a recurrent neural network,
which is able to identify and to control the dynamics of a RL or optimal control
problem. Its principal architecture is based on an RNN, which is extended
by an additional control network and an output layer, which incorporates the
reward function. Overall its integrated structure follows the idea of mapping the
complete RL problem within one network.

The RCNN has to fulfill two different tasks, the identification of the prob-
lem’s dynamics and the optimal control, and is hence trained in two consecutive
steps. Note, that this distinguishes our approach from other work on RL and
recurrent neural networks, e.g. [4], where one usually tries a combined learning
of both tasks in one step. It has the advantage that in the first step the network
only focuses on mapping the problem’s dynamics whereas in the second step it
concentrates on learning the optimal policy based on the identified system. For
both steps the training is done offline on the basis of previous observations. Its
complete architecture is depicted in figure 1.

In the first step the RCNN is limited to the identification and modeling of
the system dynamics and is consequently reduced to an RNN with dynamically
consistent overshooting [2] (fig. 1, bold and dotted connections). Hence, analogue
to those RNN, the optimisation task of step one takes on the following form:

sτ = tanh(IJpτ + Dad
τ + θ)

xτ+1 = Csτ

with pτ =
{

Asτ−1 + Bxd
τ ∀τ ≤ t

Asτ−1 + Bxτ ∀τ > t

∑
t

∑
τ

‖xτ − xd
τ‖2 → min

A,B,C,D,θ

(1)

Here, the RCNN’s internal state transition equation is a nonlinear trans-
formation of the previous internal state sτ−1 ∈ R

J , either the environmental
state variables xd

τ ∈ R
I or, due to dynamical consistency, the model’s predic-

tions xτ ∈ R
I for those, and the applied actions ad

τ ∈ R
N using weight matrices

A ∈ R
J×J , B ∈ R

J×I and D ∈ R
J×N and a bias θ ∈ R

J , which handles offsets
in the input variables, where I, J , and N denote respectively the number of en-
vironmental variables, hidden neurons and available actions. Note, that at this
the Hyperbolic Tangens is applied compenent-wise and IJ stands for a J × J
identity matrix. In addition to standard RNN [2] out of architectural reasons
a pre-state pτ ∈ R

J with the same time index and dimension as sτ is inserted,
which serves in the second step as an input for the control network. The net-
work output xτ+1 ∈ R

I is computed from the internal state sτ ∈ R
J employing

matrix C ∈ R
I×J . Note, that in this step the actions of the observed training

data ad
τ ∈ R

N are also given to the RCNN as present and future inputs (τ ≥ t)
because they directly influence the system dynamics but cannot or should not
be learned by the network (fig. 1, dotted connections).

320

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



ps t−1 s t
s t+1

at

b
r t

F

E

b
r t+1

at+1

at+1
xt−1 xtt−1a

C

t+1xtx

B

A

D

pt−1 t
A

B

pt+1

C

t+2x

G

R
t+2

θ

D D

E

FG

R
t+1

θ θ

B

I I I

D

d d d dd

ta

C

Fig. 1: Learning the optimal policy by the Recurrent Control Neural Network
(RCNN). Dotted connections are just used in the first step whereas the dashed
parts, the control networks, are only applied in the second one. In phase 1
matrices A,B,C, and D, coding the dynamics are trained. In phase 2 the optimal
policy coded in matrices E and F is learned.

In the second step all connections coding the dynamics, which have been
learned in the first step, in particular matrices A,B,C, and D and the bias θ,
get fixed, i.e., their weights are not changed during further training. In return the
integrated control network, which has the form of a three layer (input, hidden,
output) neural network is activated (fig. 1, dashed connections). It uses the
values of the pre-state pτ , which combines the information of the previous state
sτ−1 and the environmental observables xd

τ , respectively its own predictions xτ ,
as inputs. As an output it determines the next action or control variables aτ .
Putting this into equations the control network has the form

aτ = f(F tanh(Epτ + b)) ∀τ ≥ t (2)

where E ∈ R
K×J and F ∈ R

N×K , with K denoting the number of hidden
neurons of the control network, are weight matrices, b ∈ R

K is a bias and f
an arbitrary, component-wise applied activation function, which can be used to
scale or limit the network’s action space. The hidden state (fig. 1) of the control
network is denoted by rτ ∈ R

K .
As we want to determine the optimal action aτ , the control network (eq. 2)

is applied in the present and overshooting part of the RCNN (τ ≥ t), where in
this step it does not get anymore future actions as external inputs (fig. 1, dotted
connections). In the past unfolding (τ < t) the RCNN is, as in step one, still
provided with the actions ad

τ of the observed training data. Furthermore in the
present and past unfolding (τ ≤ t) the output-clusters are taken away, because
they are only needed for the identification of the system dynamics. In the future

321

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



part (τ > t) of the network the error-function (eq. 1) of the output clusters gets
replaced by the reward, or respectively cost, function c(·). Architecturally this
is realised by additional reward clusters Rτ ∈ R

L, where L is the number of
variables influencing the reward, which are connected to the output clusters by
a problem specific and fixed matrix G ∈ R

L×I as well as a possible activation
function h within the output clusters xτ . As an alternative it is also possible to
code c(·) directly into an appropriate neural architecture [8].

The weights of the control network are only adapted according to the back-
propagated error from the reward clusters Rτ (τ > t). This follows the idea that
in the second step we want to learn a policy, which maximises the reward, re-
spectively minimises the costs, given the system dynamics modelled in step one
(eq. 1). Note that, in doing so the learning algorithm changes from a descriptive
to a normative error function.

Summarising, step two can be represented by the following set of equations:

sτ =
{

tanh(IJpτ + Dad
τ + θ) ∀τ < t

tanh(IJpτ + Daτ + θ) ∀τ ≥ t

Rτ+1 = Gh(Csτ ), ∀τ ≥ t

with aτ = f(F tanh(Epτ + b)) ∀τ ≥ t

and pτ =
{

Asτ−1 + Bxd
τ ∀τ ≤ t

Asτ−1 + Bxτ ∀τ > t

∑
t

∑
τ>t

c(Rτ ) → max
E,F,b

(3)

In both steps (eqs. 1 and 3) the RCNN is trained on the identical set of
training patterns T and with backpropagation through time [9]. Concerning the
second step this means in a metaphoric sense that by backpropagating the error
of the reward function c(·), the algorithm fulfills the task of transferring the
reward back to the agent.

The RCNN ideally combines the advantages of an RNN for identifying the
problem’s dynamics and a three layer control neural network for learning the
optimal policy. In doing so, we can benefit from a high approximation accuracy
and therefore control complex dynamics in a very data-efficient way. Besides,
we can easily scale into high-dimensions or reconstruct a partially observable
environment [5]. Furthermore, out of the construction of the RCNN, it can well
handle continuous state and action spaces.

3 The mountain car problem

The mountain car problem is fully described in [1]. Its objective is to reach
the top of a valley with an underpowered car by gaining kinetic energy through
driving forward and backward. The car’s continuous state consists of a one
dimensional position p and a velocity v. There are three possible actions: wait,
full power forward and backward. The reward is one when the car has reached

322

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



the top of the hill and zero otherwise. A trivial near-optimal policy, as reported
in [6], is to drive the car always full power in the direction of the car’s current
velocity v.

We used two different settings of the outlined problem, the standard [1] and
a slightly simplified one. In the latter we used so-called meta-actions or options
[10], which let the agent only take a decision in every fifth time step. This al-
lows the car to travel longer distances in between taking actions. Consequently
the car can reach the top of the hill with less decision steps than in the stan-
dard setting. For each setting we allowed 100.000 observations for training and
tested the learned policy afterwards on the respective simulated dynamics. Note,
that for the latter the continuous actions determined by the RCNN had to be
re-discretised, which can be seen as an additional difficulty. In the simplified
setting the training set for the RCNN was created with random actions. For the
standard version we pre-applied ε-greedy prioritised sweeping [1] (with ε = 0.5)
to obtain a representative training set because random actions never reached the
top of the hill. The applied RCNN was ten time steps unfolded in the past. For
the standard setting the future unfolding counted 300 and for the simplified one
50 time steps, which allowed the networks to see at least one goal state within
its (finite) future horizon.

We compared our results to the described trivial near-optimal policy [6],
standard prioritised sweeping (PS) [1] and the minimum number of decision
steps determined by manual tuning. Table 1 summarises our results for the two
settings. It shows that the RCNN is able to learn a potentially optimal policy
as it is even as good as the manually tuned one. It also outperforms the best
results on the problem reported in [7].

RCNN PS Trivial Near-Optimal Potentially Optimal
Standard 104 144 125 104
Simplified 21 27 26 21

Table 1: Number of decision steps needed by the RCNN, the PS, the trivial
near-optimal [6], and the manually tuned potentially optimal policy to drive the
car up the hill.

In another experiment we tested the RCNN with regard to data-efficiency
and noise robustness on two different settings, one with continuous actions [11],
of the well-known cart-pole problem [1], where it also showed outstanding results
and outperformed standard benchmarks [8].

4 Conclusion and Outlook

In this paper we presented our Recurrent Control Neural Network, which is a
model-based reinforcement learning approach. We argued that the combination
of an RNN and a three layer neural network within the RCNN is ideal for solving
high-dimensional RL problems with continuous state and action spaces in a data-
efficient manner. The application to the mountain car problem demonstrated

323

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



the capabilities of the RCNN as it was able to outperform standard methods
as well as the cited near-optimal policies. It was even as good as the manually
tuned one, which underlines that the RCNN is indeed able to learn a potentially
optimal policy.

Further research is done on the network architecture, in particular on a re-
duction or aggregation of the several different matrices. Besides that we apply
the RCNN to more elaborated industrial and economic problems.

Acknowledgment

Our computations were performed on the Neural Network modeling software
SENN (Simulation Environment for Neural Networks), which is a product of
Siemens AG.

References

[1] R. S. Sutton and A. Barto. Reinforcement Learning: An Introduction (Adaptive Compu-
tation and Machine Learning). MIT Press, Cambridge, MA, 1998.

[2] H. G. Zimmermann, R. Grothmann, A. M. Schaefer, and Ch. Tietz. Identification and
forecasting of large dynamical systems by dynamical consistent neural networks. In
S. Haykin, J. Principe, T. Sejnowski, and J. McWhirter, editors, New Directions in Sta-
tistical Signal Processing: From Systems to Brain, pages 203–242. MIT Press, 2006.

[3] J. Schmidhuber. Reinforcement learning in markovian and non-markovian environments.
In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural In-
formation Processing Systems, volume 3, pages 500–506. Morgan Kaufmann, San Mateo,
CA, 1991.

[4] B. Bakker. The State of Mind: Reinforcement Learning with Recurrent Neural Networks.
PhD thesis, Leiden University, 2004.

[5] A. M. Schaefer and S. Udluft. Solving partially observable reinforcement learning prob-
lems with recurrent neural networks. In Reinforcement Learning in Non-Stationary En-
vironments, Workshop Proceedings of the European Conference on Machine Learning
(ECML-05), 2005.

[6] M. J. A. Strens and A. W. Moore. Direct policy search using paired statistical tests.
In Proceedings of the Eighteenth International Conference on Machine Learning (ICML-
2001), Williams College, MA, 2001.

[7] M. Abramson, P. Pachowicz, and H. Wechsler. Competitive reinforcement learning in
continuous control tasks. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN), Portland, OR, 2003.

[8] A. M. Schaefer, S. Udluft, and H. G. Zimmermann. A recurrent control neural network
for data efficient reinforcement learning. In Proceedings of the IEEE International Sym-
posium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL-
2007), Honolulu, HI, 2007.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. In D. E. Rumelhart and J. L. McClelland et al., editors, Parallel
Distributed Processing: Explorations in The Microstructure of Cognition, volume 1, pages
318–362. MIT Press, Cambridge, MA, 1986.

[10] D. Precup, R. Sutton, and S. Singh. Theoretical results on reinforcement learning with
temporally abstract behaviors. In Proceedings of the 10th European Conference on Ma-
chine Learning (ECML), pages 382–393, 1998.

[11] M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine
Learning Research, pages 1107–1149, 2003.

324

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.


