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Abstract. A large variety of machine learning models which aim at
vector quantization have been proposed. However, only very preliminary
rigorous mathematical analysis concerning their learning behavior such as
convergence speed, robustness with respect to initialization, etc. exists. In
this paper, we use the theory of on-line learning for an exact mathematical
description of the training dynamics of Vector Quantization mechanisms
in model situations. We study update rules including the basic Winner-
Takes-All mechanism and the Rank-Based update of the popular Neural
Gas network. We investigate a model with three competing prototypes
trained from a mixture of Gaussian clusters and compare performances in
terms of dynamics, sensitivity to initial conditions and asymptotic results.
We demonstrate that rank-based Neural Gas achieves both robustness to
initial conditions and best asymptotic quantization error.

1 Introduction

Vector quantization (VQ) is an important unsupervised learning algorithm,
widely used in different areas such as data mining, medical analysis, image com-
pression, and speech or handwriting recognition [1]. The main objective of VQ is
to represent the data points by a small number of prototypes. This can directly
be used for compression, clustering, data mining, or (after post labeling) classifi-
cation. The basic ”winner-takes-all” (WTA) algorithm or batch variants thereof
such as the popular k-means clustering directly optimize the quantization error
underlying vector quantization. However, since the quantization error is multi-
modal, these methods can be subject to confinement in local minima and can
produce suboptimal results. A variety of alternatives have been proposed, some
of which are heuristically motivated, some of which are based on a cost function
related to the quantization error: the self-organizing map [9], fuzzy-k-means [2],
stochastic optimization [6], or neural gas [10], to name just a few. These algo-
rithms have in common that a pattern influences more than one prototype at a
time by using the ”winner-takes-most” paradigm. In practice, this often yields
better solutions, however, the effect of this strategy on the convergence speed or
asymptotic behavior has hardly been rigorously investigated so far.

Methods from statistical physics and the theory of on-line learning [7] allow
for an exact mathematical description of learning systems for high dimensional
data. In the limit of infinite dimensionality, the system can be fully described in
terms of few characteristic quantities. The evolution of these quantities or order
parameters along the training procedure can be analysed by a set of coupled
ordinary differential equations (ODE). By integrating these ODEs, it is possible
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to analyse the performance of VQ algorithms in terms of stability, sensitivity to
initial conditions and achievable quantization error.

We extend the theoretical framework of simple (WTA-based) vector quanti-
zation introduced in an earlier work [5] by considering more than two prototypes.
Further, we investigate the popular Neural Gas approach (NG) [10] as well as a
(computationally better tractable) approximation thereof. This is an important
step towards the investigation of general VQ approaches which are based on
neighborhood cooperation such as NG or the self-organizing map.

2 Winner-Takes-All and Rank-Based Algorithms

Vector Quantization represents N -dim. input data ξμ ∈ IRN by a set of proto-
types W = {wi}S

i=1 in IRN . We assume that input data is generated randomly
according to a given density P (ξ) and is presented sequentially during training.
Depending on the algorithm, one or more prototypes are updated on-line.

The primary goal of VQ is to find a faithful representation of the data by
minimizing the so-called quantization or distortion error

E(W ) =
∫

dξP (ξ)
S∑

i=1

d(ξ,wi)
∏
j �=i

Θ [d(ξ,wj) − d(ξ,wi)] − 1
2

∫
dξP (ξ)ξ2 (1)

Here we restrict ourselves to the quadratic Euclidean distance measure d(ξ,wi) =
(ξ − wi)2/2. For each input vector ξ the closest prototype wi is singled out by
the product of Heaviside functions, Θ(x) = 0 if x < 0; 1 else. The constant
1
2

∫
dξP (ξ)ξ2 term is independent of prototype positions and is substracted for

convenience.
Algorithms studied in the following can be interpreted as stochastic gradient

descent procedures with respect to a cost function H(W ) similar to E(W ). The
generalized form reads H(W ) = 1

2

∫
dξP (ξ)

∑S
i=1 f(ri)(ξ −wi)2 − 1

2

∫
dξP (ξ)ξ2

where ri is the rank of prototype wi with respect to the distance d(ξ,wi), i.e.
ri = S −∑

j �=i Θ [d(ξ,wj) − d(ξ,wi)]. Rank rJ = 1 corresponds to the so-called
winner, i.e. the prototype wJ closest to the example ξ. The rank function f(ri)
determines the update strength for the set of prototypes and satisfies the nor-
malization

∑S
i=1 f(ri) = 1; note that it does not depend explicitly on distances

but only on their ordering.
The corresponding stochastic gradient descent in H(W ) is of the form

wμ
i = wμ−1

i + Δwμ
i with Δwμ

i =
η

N
f(ri)(ξμ − wμ−1

i ) (2)

where η is the learning rate and ξμ is a single example drawn independently at
time step μ of the sequential training process. We discuss three basic algorithms:
WTA: Only the winner is updated for each input. The corresponding rank
function is fWTA(ri) = 1 if ri = 1; 0 else. Note that for this choice H(W )
reduces to the quantization error E(W ).
Linear rank: As a particularly simple rank-dependent update we consider a
scheme where the update strength decreases linearly with the rank, fLIN(ri) =
(1/C)(S − ri + 1) where C = 1

2S(S + 1) is a normalization factor.
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Neural Gas: The update strength decays exponentially with the rank controlled
by a parameter λ. The rank function is fNG(ri) = (1/C(λ))hλ(ri) with hλ =
exp (−ri/λ(t)) and C(λ) =

∑S
i=1 exp (−i/λ(t)). The parameter λ is frequently

set large initially and decreased in the course of training. Note that for λ → 0
NG becomes identical with WTA training.

3 Model Data

We choose the model distribution of the data to be a mixture of two spherical
Gaussian clusters: P (ξ) =

∑
σ=1,2 pσP (ξ|σ) with P (ξ|σ) = 1

(
√

2π)N
exp[− 1

2 (ξ −
�Bσ)2] where pσ are the prior probabilities. The components of vectors ξ are unit
variance random numbers. The cluster mean vectors are �B1 and �B2 where �
controls the separation of cluster centers. Bσ are orthonormal, i.e. Bi ·Bj = δi,j

where δ is the Kronecker delta. Note that the clusters strongly overlap and the
separation is only apparent in the two-dimensional subspace spanned by B1,2.
Hence, it is a non-trivial task to detect the structure in N dimensions.

4 Analysis of the Learning Dynamics

We give a brief description of the theoretical framework and refer to [3, 12] for
further details. Following the lines of the theory of on-line learning, e.g. [7], the
system can be fully described in terms of a few so-called order parameters in the
thermodynamic limit N → ∞. A suitable set of characteristic quantities for the
considered learning model is: Rμ

iσ = wμ
i ·Bσ and Qμ

ij = wμ
i ·wμ

j . Note that Riσ

are the projections of prototype vectors wμ
i on the center vectors Bσ and Qμ

ij
correspond to the self- and cross- overlaps of the prototype vectors.

From the generic update rule defined above, Eq. (2), we can derive the fol-
lowing recursions in terms of the order parameters:

N(Rμ
iσ − Rμ−1

iσ ) = ηf(ri)
(
bμ
σ − Rμ−1

iσ

)
N(Qμ

ij − Qμ−1
ij ) = η

[
f(rj)

(
hμ

i − Qμ−1
ij

)
+ f(ri)

(
hμ

j − Qμ−1
ij

)]
+

η2f(ri) × f(rj) + O(1/N) (3)

where hμ
i and bμ

i are the projections of the input data vector ξμ: hμ
i = wμ−1

i ·
ξμ, bμ

σ = Bσ · ξμ. For large N , the O(1/N) term can be neglected. In the
limit N → ∞, the order parameters self average [11] with respect to the random
sequence of examples. This means that fluctuations of the order parameters
vanish and the system dynamics can be described exactly in terms of their mean
values. Also for N → ∞ the rescaled quantity t ≡ μ/N can be conceived as a
continuous time variable. Accordingly, the dynamics can be described by a set
of coupled ODE [3, 8] after performing an average over the sequence of input
data:

dRiσ

dt
= η

(〈bσf(ri)〉 − 〈f(ri)〉Riσ

)
dQij

dt
= η

(〈hif(rj)〉 − 〈f(rj)〉Qij + 〈hjf(ri)〉 − 〈f(ri)〉Qij

)
+

η2〈f(ri) × f(rj)〉 (4)
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Fig. 1: Evolution of the quantization error E(W ) at learning time t̃ = ηt for
WTA, linear rank and NG algorithms for η = 0.1, p1 = 0.75 and �=1.5. The
parameters for NG are λi = 2, λf = 0.01. The set of prototypes is initially set
(a) Riσ(0) ≈ 0, Qij(0) ≈ 0, ∀{i, j, σ} and (b) Ri1(0) ≈ −2, Ri2(0) ≈ 3, Qij(0) ≈
Ri1(0)2 + Ri2(0)2, ∀{i, j}.

where 〈.〉 is the average over the density P (ξ).
Exploiting the limit N → ∞ once more, the quantities hμ

i , bμ
σ become corre-

lated Gaussian quantities by means of the Central Limit Theorem. Thus, the
above averages reduce to Gaussian integrations in, here, five dimensions. While
most of these can be performed analytically (in particular the linear approx-
imation of NG), some (in particular WTA and NG) have to be implemented
numerically. See [3, 12] for details of the computations. Given the averages
for a specific rank function f(ri) we obtain a closed set of ODE. Using initial
conditions Riσ(0), Qij(0), we integrate this system for a given algorithm and get
the evolution of order parameters in the course of training, Riσ(t), Qij(t).

Analogously, the quantization error, Eq. (1), can be expressed in terms of
order parameters after performing the averages in E =

∑S
i=1

(
fWTA(ri)Qii −

2hif(ri)
)
. Plugging in the values of the order parameters computed by solv-

ing the ODE, {Riσ(t), Qij(t)}, we can study the so called learning curve E in
dependence of the training time t for a given VQ algorithm.

5 Results

The dynamics of WTA learning for two prototypes have been studied in an earlier
publication [4]. Here we present the non-trivial extension to three competing
prototypes and winner-takes-most schemes. The NG algorithm is studied for
decreasing λ with λ(t) = λi(λf/λi)t/tf where tf is the maximum learning time.

As shown in Fig. 1, we observe that the quantization error decreases faster in
the WTA algorithm compared to rank-based methods at the initial stages of the
learning. This behavior can be explained by the fact that the cost function of
winner-takes-most algorithms differs from the quantization error by smoothing
terms in particular in early stages of training. WTA yields better asymptotic
quantization error than the linear rank which is due to the fact that the approxi-
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Fig. 2: The trajectories of the 3 prototypes projected on the plane spanned by
the two cluster mean vectors Ri1-Ri2, using the parameters in Figs. 1(a) and
1(b). The crosses mark the two Gaussian cluster centers �B1 (p1 = 0.75) and
�B2. The dots mark the initial positions and the markers ©, � and � indicate
the projections of prototypes after t̃=50 for different algorithms.

mation of the exponential of NG by the linear rank differs from the quantization
error also in late stages of training. For small λ, WTA and NG training be-
come identical. This is mirrored by the fact that, for large t and λf → 0, both
algorithms yield the same quantization error. The linear approximation of NG
describes the behavior of NG quite well in early stages of training, such that
it constitutes a feasible approximation for these stages (note that the linear
approximation, unlike NG, does not require numerical evaluation of the ODEs).

The influence of initial prototype positions is of particular interest since
winner-takes-most schemes are supposed to partially overcome the sensitivity
of WTA schemes to initialization. The set of initial values {Riσ(0), Qij(0)}
strongly affects the later performance of the algorithms. In Fig. 1(a), proto-
types are initialized close to the origin and we observe that WTA yields the
best overall quantization error in this case. In Fig. 1(b), we set the initial pro-
totypes on the extension of the line between cluster centers, viz. �(B1 − B2).
Here, all prototypes were initialized far away from the origin on the side of the
weaker cluster. For WTA training, prototypes reach t → ∞ asymptotic posi-
tions corresponding to the global minimum of E(W ) for small learning rates
η → 0. However, learning can slow down significantly at intermediate stages of
the training process. Transient configurations may persist in the vicinity of local
minima and can indeed dominate the training process. Rank-based methods are
more robust w.r.t. the initial position of prototypes than WTA. Apparently, the
NG combines the advantages of robustness to initial conditions with achieving
the best quantization error asymptotically.

The projections of the prototype vectors on the plane spanned by the cluster
centers B1 and B2 after t̃ = 50 are presented in Fig. 2. In WTA, the projections
of two prototypes converge near the center of the stronger Gaussian cluster. The
two prototypes, say i and j, have the same Riσ = Rjσ and length Qii = Qjj .
However, the prototypes differ in their components orthogonal to the B1 − B2

plane. Therefore, they are not identical vectors, as they do not satisfy the
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condition Qii = Qjj = Qij ⇐⇒ wi = wj . It is also worth noting that for all
algorithms, the projections of the asymptotic configuration are located on the
B1 − B2 line due to symmetry reasons.

6 Conclusion

We have put forward an exact mathematical analysis of the dynamics of WTA-
and rank-based VQ algorithms for three prototypes in a high dimensional data
space. The performance is measured by the evolution of the quantization error.
The WTA algorithm always converges to the best asymptotic quantization error
in this comparably simple learning scenario, however the learning curve is highly
dependent on the initial conditions. The rank-based methods are less sensitive
to the initial conditions, and NG in particular achieves both robustness and best
asymptotic quantization error. Thereby, convergence speed is comparable or (for
initialization outside the clusters) better than simple WTA mechanisms and the
same final quantization error can be obtained. Since NG cannot fully be solved
analytically but requires numerical integration of the corresponding ODEs, we
also investigated a simple linear approximation. This reasonably approximates
the quantization error of NG during early stages of training, but performs worse
in the asymptotic limit since the cost function is very different from E(W ).
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