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Abstract. Discovering interdependencies and causal relationships is one
of the most relevant challenges raised by the information era. As more
and better data become available, there is an urgent need for data-driven
techniques with the capability of efficiently detecting hidden interactions.
As such, this important issue is receiving increasing attention in the recent
literature. The aim of the Learning Causality Special Session is to bring
together theory-oriented and practitioners of this fascinating discipline.
The main streams of causality detection by Computational Intelligence will
be covered, namely, the probabilistic, information-theoretic, and Granger
approaches.

1 Introduction

Learning is a constant search to relate events, particularly between actions and
their consequences, that allows us to understand the world and adapt to it. This
pattern, deeply installed in our behavior since childhood, has evolved into the
fundamental question in human reasoning and, more generally, in the develop-
ment of all kinds of science.

The study of causality has a rich history in Philosophy. Particularly influen-
tial in this field was the positive account of causality by David Hume ([1]). He
asserted that our idea of causation consists of little more than expectation for
certain events to result after other events that precede them. In his own words,
“We have no other notion of cause and effect, but that of certain objects, which
have been always conjoined together, and which in all past instances have been
found inseparable. We cannot penetrate into the reason of the conjunction. We
only observe the thing itself, and always find that from the constant conjunc-
tion the objects acquire a union in the imagination.” Accepting, like Hume, our
impossibility to understand the real nature of causation, we can nevertheless
study the statistical or probabilistical characterization of such “conjunctions”,
including their assessment.

In this introductory paper we present the main streams to causality assess-
ment. First we give some definitions of causality and some approaches to their
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detection. These approaches will be discussed in more detail in the papers con-
tributed to our special session: a kernel-basel causal inference methodology by
X. Sun et al., an information-theoretic approach by N. Manyakov and M. Van
Hulle, and the Granger approach to causality assessment by L. Angelini et al.
Sections 3 and 4 were inspired by [2].

2 Causality detection and quantification by probability
approaches

The following definitions are adopted from [2]. The probabilistic notion of causal-
ity described by Suppes [3] is the following: An event X is a cause to event Y if
(i) X occurs before Y , (ii) the likelihood of X is non zero, and (iii) the likelihood
of occurring Y given X is bigger than the likelihood of Y occurring alone.

Untill 1970 causal modeling was mostly developed within the social sciences.
This was primarily due to a pioneering work by Selltiz et al. [4] who specified
three conditions for the existence of causality:
1. There must be a concomitant covariation between X and Y.
2. There should be a temporal asymmetry or time ordering between the two
observed sequences.
3. The covariance between X and Y should not disappear when the effects of
any confounding variables (i.e., those variables which are causally prior to both
X and Y) are removed.

The first condition implies a correlation between a cause and its effect, though
one should explicitly remember that a perfect correlation between two observed
variables in no way implies a causal relationship. The second condition is intu-
itively based on the arrow of time. The third one is rather problematic because
it requires to rule out all other possible causal factors. Theoretically, there is
potentially an infinite number of unobserved confounding variables, yet the set
of measured variables is finite, thus leading to an indeterminacy in the causal
modeling approach. In order to avoid this, some structure is imposed on the
adopted modeling scheme which should help defining it. The way in which the
structure is imposed is crucial in defining as well as quantifying causality.

2.1 Causal inference with kernel-based statistical dependence mea-
sures

As described in more detail in the contributions to this Special Session by X. Sun
et al., the main idea behind the kernel-basel approach to statistical dependencies
detection is to use a kernel to map the input space into an appropriate feature
space, where the presence or absence of correlations is then studied. This is pos-
sible thanks to the definition of a conditional cross-covariance operator between
the kernel spaces of X, Y and Z. The norms of these kernel-based operators
are representative of the corresponding coupling intensities. Upon a suitable
normalization, the strengths of marginal and conditional dependencies can be
compared, and thereby the existence of causality relationships can be assessed.
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The detection of causal structures by means of the kernel-based approach
is in our Session represented by the paper Causal inference with kernel-based
statistical dependence measures by X. Sun and D. Janzing.

3 Granger-causality based approaches

N. Wiener gave the first definition of “computationally measurable” causality:
“For two simultaneously measured signals, if we can predict the first signal better
by using the past information from the second one than by using the information
without it, then we call the second signal causal to the first one” [5].

C. W. J. Granger introduced Wiener’s concept of causality into the analysis
of time series. He identified two components of the statement about causality: 1)
the cause occurs before the effect, and 2) the cause contains information about
the effect that is unique, and is present in no other variable. It follows that
the causal variable can help to forecast the effect variable after other data had
been used [6]. This restricted sense of causality, referred to as Granger causality,
characterizes the extent to which a process Xt is leading another process Yt, and
builds upon the notion of incremental predictability. It is said that the process Xt

Granger causes another process Yt if future values of Yt can be better predicted
using the past values of Xt and Yt rather than only past values of Yt. The
standard test developed by Granger [7] is based on a linear regression model

Yt = ao +
L∑

k=1

b1kYt−k +
L∑

k=1

b2kXt−k + ξt, (1)

where ξt is an uncorrelated random variable with zero mean and variance σ2, L
is the specified number of time lags, and t = L + 1, . . . , N . The null hypothesis
that Xt does not Granger cause Yt is supported when b2k = 0 for k = 1, . . . , L,
reducing Eq. (1) to

Yt = ao +
L∑

k=1

b1kYt−k + ξ̃t. (2)

This model leads to two well-known alternative test statistics, the Granger-
Sargent and the Granger-Wald test [8].

This linear framework for measuring and testing causality has been widely
applied in economy and finance (see Geweke [9] for a comprehensive survey of the
literature), and in natural sciences. Nevertheless, the limitation of the present
concept to linear relations required further generalizations.

Baek and Brock [10] and Hiemstra and Jones [11] proposed a nonlinear ex-
tension of the Granger causality concept. Their non-parametric dependence esti-
mator is based on the so-called correlation integral, which is a probability distri-
bution and entropy estimator developed by physicists Grassberger and Procaccia
in the field of nonlinear dynamics and deterministic chaos as a characterization
tool for chaotic attractors [12]. Following Hiemstra and Jones [11], Aparicio and
Escribano [13] suggested an information-theoretic definition of causality that
includes both linear and nonlinear dependencies.
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In Physics in general, and in nonlinear dynamics in particular, a considerable
interest has recently emerged in studying cooperative behavior of coupled com-
plex systems [14]. Synchronization and related phenomena were observed not
only in physical, but also in many biological systems. In such systems it is not
only important to detect synchronized states, but also to identify drive-response
relationships and thus causality in the evolution of the interacting (sub)systems.

Arnold et al. [15] proposed asymmetric dependence measures based on av-
eraged relative distances of the (mutual) nearest neighbors. As pointed out by
Quian Quiroga et al. [16] and Schmitz [17], these measures, however, might
be influenced by the different dynamics of the individual signals, and different
dimensionality of the underlying processes, rather than by coupling asymmetry.

Another nonlinear extension of the Granger causality approach was proposed
by Chen et al. [18] using local linear predictors. An important class of nonlinear
predictors are based on radial basis functions, which were used for nonlinear
parametric extensions of the Granger causality concept [19, 20].

The detection of causal communities by means of the Granger causality ap-
proach is in our Session represented by the paper Causality and communities in
neural networks by L. Angelini et al.

4 Causality detection by information theory

A non-parametric method for measuring causal information transfer between
systems was proposed by T. Schreiber [21]. His transfer entropy is designed as a
Kullback-Leibler distance of transition probabilities. This measure is in fact an
information-theoretic functional of probability distribution functions.

Paluš et al. [22] studied synchronization phenomena in experimental time
series also by means of information theory, concretely by mutual information
(M.I.), which is a measure of general statistical dependence. M.I. and conditional
M.I. can also be used for inferring causal relationships. It was shown in [22] that
Schreiber’s transfer entropy is equivalent to the conditional mutual information.
Diks and DeGoede [23] applied a nonparametric approach to nonlinear Granger
causality using the concept of correlation integrals [12] and pointed out the
connection between them and information theory. Diks and Panchenko [24]
critically discussed previous tests by Hiemstra and Jones [11]. As the most
recent development in economics, Baghli [25] proposed information-theoretic
statistics for a model-free characterization of causality, based on an evaluation
of conditional entropy.

Nonlinear extensions of Granger causality based on an information-theoretic
formulation have had many applications. For example, Schreiber’s transfer en-
tropy has been applied in Climatology [26, 27], Physiology [27, 28], and Neuro-
physiology [29]. Paluš et al. [22, 30] applied their conditional mutual information
based measures in analyses of electroencephalograms of patients suffering from
epilepsy. Paluš and Stefanovska demonstrated the suitability of the conditional
mutual information approach to assess causality in the cardio-respiratory inter-
action [22, 31].
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4.1 Coarse-grained information rates

Paluš et al. [22, 30] introduced several coarse-grained information rates (CIR)
to describe the interaction between two given systems. All of them are based on
mutual information. Since for causality detection we are interested in assessing
the direction of the coupling between two systems, we will mention here only
two coarse-grained information rates (for other CIR definitions, see e.g. [2]).

Let {x(t)} be a time series considered as a realization of a stationary and
ergodic stochastic process {X(t)}, t = 1, 2, 3, . . . In the following we denote x(t)
as x and x(t + τ) as xτ for simplicity. To define the simplest form of CIR, we
compute the mutual information I(x;xτ ) for all analyzed datasets and find τmax

such that, for τ ′ ≥ τmax, I(x;xτ ′) ≈ 0 for all the datasets. Then we define a
norm of the mutual information

||I(x;xτ )|| = ∆τ

τmax − τmin + ∆τ

τmax∑
τ=τmin

I(x;xτ ) (3)

with τmin = ∆τ = 1 sample as a usual choice. The CIR h1 is then defined as

h1 = I(x, xτ0)− ||I(x;xτ )||. (4)

Since usually τ0 = 0 and I(x;x) = H(X), which is given by the marginal
probability distribution p(x), the sole quantitative descriptor of the underly-
ing dynamics is the M.I. norm (3). Paluš et al. [22] called this descriptor the
coarse-grained information rate of the process {X(t)} and denoted it by
i(X). Now, consider two time series {x(t)} and {y(t)} regarded as realizations
of two processes {X(t)} and {Y (t)} which represent two possibly linked (sub)
systems. These two systems can be characterized by their respective CIR’s i(X)
and i(Y ). In order to characterize the interaction between the two systems, in
analogy to the above CIR, Paluš et al. [22] defined their mutual coarse-grained
information rate (MCIR) by

i(X, Y ) =
1

2τmax

τmax;τ 6=0∑
τ=−τmax

I(x; yτ ). (5)

Due to the symmetry properties of I(x; yτ ), the mutual CIR i(X, Y ) is symmet-
ric, i.e., i(X, Y ) = i(Y, X).

Assessing the direction of coupling between the two systems, i.e., causality in
their evolution, we ask the question of how the dynamics of one of the processes,
say {X}, is influenced by the other process, {Y }. For a quantitative answer to
this question, Paluš et al. [22] proposed to evaluate the conditional coarse-
grained information rate CCIR i0(X|Y ) of {X} given {Y }:

i0(X|Y ) =
1

τmax

τmax∑
τ=1

I(x;xτ |y), (6)

considering the usual choice τmin = ∆τ = 1 sample.
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Paluš and Stefanovska [31] adapted the conditional mutual information ap-
proach [22] to the analysis of instantaneous phases of interacting oscillators
and demonstrated the suitability of this approach for analyzing causality in the
cardio-respiratory interaction [22]. The paper from N. Manyakov and M. Van
Hulle (Causality analysis of LFPs in micro-electrode arrays based on mutual
information) represents an application of the CCIR in our Session.

5 Conclusions

In this manuscript we have given an overview of the main lines of research in
causality assessment, assuming that we observe dynamical systems by recording
time-series. Given the information explosion of the recent years, the problem of
causality detection bears a growing importance. We have first given a very brief
account of some causality definitions drawn from Philosophy, followed by a pre-
sentation of the main streams of development within the probabilistic, statistical,
Granger, and information-theoretic approaches to interdependencies detection.
These methodologies are discussed in more detail in the papers contributed to
the Learning Causality Special Session.
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