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Abstract. In this paper, we address the problem of deriving bounds for
the moments of nearest neighbor distributions. The bounds are formulated
for the general case and specifically applied to the problem of noise variance
estimation with the Delta test and the Gamma test. For this problem, we
focus on the rate of convergence and the bias of the estimators and validate
the theoretical achievements with experimental results.

1 Introduction

Many statistical estimators extensively used in machine learning exploit the
properties of nearest neighbor distributions [1]. For instance, the estimators of
mutual information by Kraskov et al. [3] and the estimators of noise variance
proposed by Pi and Peterson [5] and Stefansson et al. [6] (the Delta test and
the Gamma test, respectively) are based on such properties and are commonly
applied in recurrent tasks like model and variable selection.

In this paper, we focus on some theoretical issues concerning arbitrary mo-
ments of nearest neighbor distance distributions; in details, we propose rigorous
formulation for lower and upper bounds of the moments. The proposed theory
is formulated under general and practical assumptions. An application of the
theory is examined on the forementioned estimators of noise variance. As for
the Delta test, we show that the estimator is asymptotically unbiased with an
expected rate of convergence that can be very slow, and we derive the bounds
for such rate. As for the Gamma test, the rate of convergence is conjectured
under clear hypothesis and the proof is stated as an open problem.

The paper is organized as follows: in Section 2, the moments of nearest
neighbor distributions are addressed to derive theoretical bounds; in Section 3,
to illustrate our results, we concentrate on noise variance estimation and analyze
the rate of convergence of the two estimators. In Section 4, the conclusions are
validated with two synthetic experiments.

2 Nearest neighbor distributions

Suppose the random variables (Xi)M
i=1 are independent and identically distributed

(i.i.d.) according to some bounded probability density (i.e., p ≤ ‖p‖∞) with
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M describing the number of samples. We assume that the range of the vari-
ables is included in a compact set C ⊂ R

n. By N [i, k] we denote the k-th
nearest neighbor of Xi and di,k is ‖Xi − XN [i,k]‖ in the Euclidean norm. Let
B(x0, r) = {x ∈ R

n|‖x − x0‖ < r} denote neighborhood balls in R
n and define

the function
ωx0(r) =

∫
B(x0,r)

p(x)dx, (1)

corresponding to the probability that a point from C is contained in B(x0, r).
In the following, we derive theoretical bounds for arbitrary moments of the

nearest neighbor distance distribution in order to examine the connection be-
tween the curse of dimensionality and methods based on such distributions.

2.1 A lower bound

To demonstrate a lower bound for the moment, we state a general proposition.

Proposition 2.1. For every α > 0

E[ωXi
(di,k)α|Xi] =

Γ(k + α)Γ(M)
Γ(k)Γ(M + α)

. (2)

In Equation 2, Γ(·) is the Gamma function and α refers to the α-th moment
of nearest neighbor distance distributions [1, 3]. The proof is based on the
properties of the Beta function given in [1], where it is also shown that

Γ(M)
Γ(M + α)

= M−α + O(M−α−1). (3)

Denoting the constant term Γ(k+α/n)/Γ(k) as c(k, α, n) and Vn the Lebesgue
measure of the unit ball in R

n (i.e., its volume), we demonstrate

Proposition 2.2. For the constant c(k, α, n) ≥ 1,

E[dα
i,k] ≥ c(k, α, n)V −α/n

n ‖p‖−α/n
∞

Γ(M)
Γ(M + α/n)

. (4)

Proof. An algebraic manipulation of E[dα
i,k|Xi] yields

E[dα
i,k|Xi] ≥ L(Xi)−α/nE[ωXi

(di,k)α/n|Xi], (5)

where L(x) = sup
0<r<∞

ωx(r)/rn. By equation 2

E[ωXi
(di,k)α/n|Xi] = c(k, α, n)

Γ(M)
Γ(M + α/n)

. (6)

From L(Xi) ≤ ‖p‖∞Vn it follows that

E[dα
i,k|Xi] ≥ c(k, α, n)V −α/n

n ‖p‖−α/n
∞

Γ(M)
Γ(M + α/n)

. (7)
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The fact that E[di,1] is of order M−1/n shows that once the dimension of the
input space grows, the average distance to the nearest neighbor goes very slowly
to zero when the number of samples is increased. Thus, a slow rate of convergence
is expected for many methods based on using nearest neighbors.

2.2 Upper bounds

We derive upper bounds for the α-moment of nearest neighbor distributions
from deterministic considerations. Our demonstration stems from the work of
Kulkarni and Posner [4]. Because of the less general approach that we are
proposing, the derived bounds are different as a less general setting allows tighter
bounds. The first proposition is stated assuming k = 1 and 0 ∈ C, even though
it is possible to derive a similar bound for k > 1.

Let λ(dx) denote the Lebesgue measure on R
n and define D(C) = sup

x∈C
‖x‖.

Proposition 2.3. For any 0 ≤ α ≤ n,

1
M

M∑
i=1

dα
i,1 ≤ 4αD(C)αM−α/n. (8)

Proof. First notice that ‖Xi − Xj‖ ≥ 1
2 (di,1 + dj,1). This implies that

‖x − Xi‖ + ‖x − Xj‖ ≥ ‖Xi − Xj‖ ≥ 1
2
(di,1 + dj,1) ∀x ∈ C. (9)

Now, x ∈ B(Xi, di,1/2)∩B(Xj , dj,1/2) would lead to a contradiction with equa-
tion 9 and thus B(Xi, di,1/2) ∩ B(Xj , dj,1/2) = ∅. Then, directly from the
definition of measure, it follows that

1
M

M∑
i=1

dn
i,1 =

1
M

V −1
n 2n

M∑
i=1

λ(B(Xi, di,1/2)) ≤ 4nD(C)nM−1. (10)

For any α ≤ n, Jensen’s inequality yields

1
M

M∑
i=1

dα
i,1 ≤

( 1
M

M∑
i=1

dn
i,1

)α/n

≤ 4αD(C)αM−α/n. (11)

As in Subsection 2.1, we also state a probabilistic upper bound. The proof
is omitted because it can be easily derived by analogy to Proposition 2.1.

Proposition 2.4. Fix α,K > 0. Then

E[dα
i,k] ≤ c(k, α, n)E[S(Xi)α/n]

Γ(M)
Γ(M + α/n)

+ o(M−α/n) (12)

with S(x) = sup
0<r<K

rn/ωx(r).

It is possible to prove that asymptotically the remainder term o(M−α/n)
goes to zero rapidly for any choice K, α > 0.
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3 Noise variance estimation

In function estimation, in addition to the inputs (Xi)M
i=1 we have the scalar

outputs (Yi)M
i=1. In the additive noise setting, the functionality between the

inputs and outputs is assumed to be Yi = f(Xi)+ri, where ri is i.i.d. noise with
zero mean. Estimating the variance of noise Var[r] is an important problem in
machine learning and nonlinear statistics [2]. Under the regularity hypothesis
assumed in Section 2, we examine two well-known noise variance estimators
based on nearest neighbor distributions: the Delta and the Gamma test.

3.1 Delta test and bias

The nearest neighbor formulation of the Delta test estimates Var[r] by

Var[r] ≈ γ1 =
1

2M

M∑
i=1

(Yi − YN [i,1])2, with Var[γ1] → 0 for M → ∞. (13)

Under the hypothesis that f is smooth, we show that the Delta test is asymp-
totically unbiased, but the convergence may be very slow. By Taylor expansion

E[(YN [i,k] − Yi)2] = 2Var[r] + E[(∇f(Xi) · (XN [i,k] − Xi))2]
+ E[R(di,k)]. (14)

The Cauchy-Schwarz inequality and inequality in Proposition 2.3 yields

E[(∇f(Xi) · (XN [i,1] − Xi))2] ≤ 16 sup
x∈C

‖∇f(x)‖2D(C)2M−2/n. (15)

Proposition 2.4 would give an alternative upper bound. For higher order terms

|R(di,1)| ≤ 1
2
d3

i,1 sup
x∈C

‖∇f(x)‖‖D2f(x)‖ +
1
4
d4

i,1 sup
x∈C

‖D2f(x)‖2. (16)

The worst case for rate of convergence is demonstrated for a simple problem.
Consider Yi = wT Xi with inputs (Xi) uniformly distributed on [− 1

2 , 1
2 ]n. By

symmetry for any function g defined on R
n×M , we have

2nE[g(X(1)
1 ,X

(2)
1 , . . . , X

(1)
2 , . . . , X

(n−1)
N ,X

(n)
N )]

=
∑

{ji}n
i=1⊂{0,1}n

E[g((−1)j1X
(1)
1 , . . . , (−1)j1X

(1)
2 , . . . , (−1)jnX

(n)
N )], (17)

which implies the covariance E[(Xi − XN [i,1])(Xi − XN [i,1])T ] = 1
nd2

i,1I. From
proposition 2.2 we get the following lower bound which is illustrated in the
experimental section:

E[(∇f(Xi) · (XN [i,1] − Xi))2]

=
1
n
‖w‖2E[d2

i,1] ≥
1
n
‖w‖2V −2/n

n

Γ(M)
Γ(M + 2/n)

. (18)
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3.2 Gamma test and bias

The Gamma test improves the Delta test and it is formulated from the terms

δj =
1
M

M∑
i=1

‖Xi − XN [i,j]‖2 and γj =
1

2M

M∑
i=1

(Yi − YN [i,j])2. (19)

The estimates Var[r] ≈ a are obtained by setting k > 0, and choosing a, b > 0
that minimize the function

∑k
j=1(γj −a− bδj)2. For proof of convergence of the

estimator, see [1].
The rate of convergence is still an open problem: assuming that the Gamma

test maintains the term of order d3
i,k but reduces the terms with lower order (see

Equation 14), we state the following conjecture.

Conjecture 3.1. Under sufficient regularity assumptions, the bias of the Gamma
test is at most of order M−3/n .

Even if we show experimental evidence of correctness, the conjecture is to be
understood as an open question yet to be rigorously addressed.

4 Experimental results

In this Section, we validate our theoretical formulations with experimental re-
sults on the problem of estimating the variance of the noise with the Delta and
the Gamma test. The experimental setup is synthetic and consists of inputs that
are uniformly distributed on [0, 1]n. As suggested in the literature [2], for the
Gamma test we fixed k = 10.

The first study case we examine is based on a simple linear model of the form
Y = X1 +X2 +X3 + ε with ε ∼ N(0, 0.04) and n = 3. The results are calculated
for the number of samples varying between 100 and 5000, with 1000 repetitions
to estimate the expectation of the estimator for each number of samples. The
curves of the absolute values of the bias are depicted in Figure 1(a) and 1(b).
As for the Delta test, the theoretical lower bound is calculated by equation 18.

As for the second study case, we consider a nonlinear setting where the data
are generated by the model Y = sin(2πX1) sin(2πX2) + sin(2πX3) sin(2πX4) +
sin(2πX5) + ε, with ε ∼ N(0, 0.1) and n = 5. The results are reported in Figure
2(a) and 2(b). For this problem, we did not calculate theoretical bounds as
the formulation of tight bounds is still investigated. Instead we fitted the curve
aM−3/5 to the experimental bias curve of the Gamma test.

5 Conclusion

In this paper, theoretical bounds are derived for nearest neighbor distributions.
Our results are promising and tighter general bounds are still under investigation.
The treatment is developed in the general context and, in order to support
the presentation, we are focusing on noise variance estimation with the Delta
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Fig. 1: Case Study 1: The bias of the Delta (a) and the Gamma test (b). The
dotted line in (a) is the theoretical lower bound. Notice the different orders of
magnitude in the diagrams.
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Fig. 2: Case Study 2: The bias of the Delta (a) and the Gamma test (b). In (b)
the dotted line is the curve aM−3/5 fitted to the results of the experiment.

and the Gamma test. Error bounds for the Delta test are derived and the
rate of convergence is illustrated by the experiments. We also conjecture the
rate of convergence of the Gamma test and the simulation results support the
conjecture.
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