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Abstract. This paper proposes a novel nonlinear transient computation
device described as the LTCM that uses the chaotic attractor provided by
the Lorenz system of equations to perform pattern recognition. Previous
work on nonlinear transient computation has demonstrated that such de-
vices can process time varying input signals. This paper investigates the
ability of the LTCM to correctly classify static, linearly inseperable data
sets commonly used as benchmarks in the pattern recognition research
community. The results from the LTCM are compared with those from
support vector machines and multi-layer perceptrons on the same data
sets.

1 Introduction

This article extends the recently proposed Nonlinear Transient Computation
Machine (NTCM)[1]. At the heart of the NTCM is the nonlinear attractor NT

that provides a nonlinear transformation from input space to phase space. The
NT relies on the property of a nonlinear attractor called sensitivity to initial
conditions [2]. This property states that two slightly different starting points
of a chaotic system will result in an very different trajectories over time. In
the NTCM, inputs are encoded as perturbations of the system away from the
attractor, proportional input will result in a proportional response as the system
wanders back onto the attractor. Nevertheless, regardless of how chaotic a sys-
tem is, the trajectories will be similar for a short period of time before diverging.
This means that observing transients near the point of perturbation will yield a
high level of noise robustness, while observing transients further along the time
series from the perturbation will increase the sensitivity of the classifier [1].

The Liquid State Machine (LSM) is a method of computation that has gained
a considerable interest [3]. It was formulated to overcome the inherent difficulties
of training a recurrent network, which are notorious for their long execution times
and high memory requirements. The LSM is composed of a large recurrent
layer of neurons (called the “liquid layer”), with many random short lateral
connections and few long. The liquid layer serves as a nonlinear projection of
inputs into a higher dimensional space, facilitating the classification of said input
by boosting the power of linear readout units in classification and regression
tasks. It is claimed that this is similar to how a support vector machine (SVM)
functions.

Previously, work has been done to demonstrate how the NTCM functions in
a comparable way to the LSM [4]. It was demonstrated that the NT which was
modeled by an NDS neuron[5], had similar properties to the LSM modeled by
a layer of recurrent neurons. This paper develops this idea further, replacing
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the NDS neuron in the NT with the Lorenz attractor. The motivation for this
change is to further study the contribution of chaos, specifically the property
that separates nearby trajectories. While the NDS neuron is a chaotic system,
it is a system that isn’t as well understood as the Lorenz. In addition to that,
it was observed that the NDS neuron was difficult to control, mainly because of
the mapping from the 3-dimensional chaotic internal state to the 1-dimensional
spike output.

The transients from the NT are presented to a set of observers, called the
NR. In this model, the NR is made up of a single perceptron with a sigmoidal
transfer function for each class of input. Training of the observer is via theδ
rule.

2 Experimental Setup

This article presents a variant on the previously published NTCM, called the
Lorenz Transient Computation Machine (LTCM) which uses the well known
Lorenz attractor [6] as the NT , with perceptrons as the NR. The equations for
the Lorenz attractor are given in Equation 1. The Lorenz is used as the NT

because it is a widely understood and extensively studied chaotic attractor.

ẋ = ay − ax
ẏ = xb− xz − y (1)
ż = xy − cz

The NT consists of a chaotic Lorenz attractor. Each input attribute is rep-
resented by a separate trajectory on the attractor. Each attribute of the input
is multiplied by a set of weights and the resulting value is added to the initial
starting point of the respective trajectory, the triplet {x1, y1, z1}. Thus, for a
pattern set that consisted of N input attributes N trajectories are required for
the NT . The initial conditions for the N trajectories are given by Equation 2.
P corresponds to an instance of input, and w represent the weights to the at-
tractor, x0i, y0i, and z0i are the initial conditions of the respective trajectories,
while x1i, y1i, and z1i are the perturbed points.

x1i = x0i +
N∑

i=1

Pi ∗ wi

y1i = y0i +
N∑

i=1

Pi ∗ wi (2)

z1i = z0i +
N∑

i=1

Pi ∗ wi

The resulting transients generated by the attractor are sampled at τ intervals.
The input I that is presented to the observer, is the column sum of the transients.
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This column sum is described by Equation 3, where ρ is the number of samples
taken. In effect, this process collapses a 3-dimensional time series into a 1-
dimensional time series. This is done in order to reduce the number of inputs
presented to the observer NR. In the experiments presented in this paper, the
value of τ was set to 10, and the number of samples taken was 25. The system
was allowed to evolve for 250 time steps after the point of perturbation before
sampling began in order to allow for more separation of transients. The observers
NR used in this setup are perceptrons with no hidden units, trained using the δ
rule.

It = xt + yt + zt : t = 1...ρ (3)

Fig. 1: The two classes of input, denoted by the diamonds and triangles are
nonlinearly separable. One of the diamonds, lies on the far side of the cluster of
triangles.

A contrived demonstration of how the model is able to classify nonlinearly
separable input follows. Consider the two classes of inputs denoted by diamonds
and triangles presented in Figure 2. The data-set is made up of 2 attributes X
and Y , and is nonlinearly separable, because some of the diamonds lies on the
far side of the cluster of triangles. The LTCM is able to correctly classify both
the clusters of diamonds, because the observer is able to associate the points in
the transients belonging to the diamond class that are linearly separable from
transients of the triangle input class. A snapshot of the transients which are
presented to the observer is given in Figure 2. Points in the transients which are
close together, are assigned a stronger observer weight which are denoted in by
(a), and points which are slightly further apart but still linearly separable are
assigned a weaker observer weight, denoted by (b).

9

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



Fig. 2: Inputs to the observer neuron. The observer picks out points in the
transients that are linearly separable, denoted by the black boxes. Points that
are closely clustered (a) are assigned larger weights while points that are more
widespread (b) are assigned weaker weights.

This demonstrates that the observer is able to pick out regions within attrac-
tor space, where transients of a particular class are most likely to pass through.
In effect, these regions or hot spots in attractor space can be likened to the
characteristics of that particular class of input. Hence, the observer is classi-
fying based on the emergent characteristics of that particular class of input,
facilitated by the NT .

3 Results

The LTCM is put through some standard pattern recognition tasks, with the
datasets obtained from the UCI Machine Learning repository [7]. The datasets
used were Iris (IR), Breast Cancer (BC) and Sonar (SN). The IR dataset consists
of 3 classes with 4 numeric attributes. Of the 3 classes 1 is linearly separable
from the other 2, while the remaining 2 are not linearly separable from each
other. The BC dataset is split into 2 classes, benign and malignant. It consists
of 9 integer valued attributes and is also nonlinearly separable. Finally, the SN
dataset is split into 2 classes, rock or mine and consists of 61 attributes.

The LTCM is compared with two other well known pattern classifiers, the
multilayer perceptron with 6 hidden units (MLP) and the support vector ma-
chine with a 3rd order polynomial kernel (SVM). The results for the MLP and
SVM come from the WEKA test suite [8]. The datasets are trained and tested
using 10-fold cross validation, where each dataset is split into 10 equal parts with
the classifiers trained on 9 parts and tested on 1 part. This process is repeated
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LTCM SVM MLP
BC 95.42% 96.28% 95.27%
IR 92.22% 92.87% 95.73%
SN 77.87% 84.82% 83.11%

Table 1: Comparison of pattern classifiers. The table lists the percentage correct
each classifier scored when doing 10-fold cross validation.

10 times. The results of classification are presented in Table 3. The results
show that the model presented in this paper compares favorably with other well
established methods.

4 Discussion

The results from the 10-fold cross validation experiments presented in table 1
show that the LTCM offers comparable performance to SVMs and MLPs on the
three benchmark pattern recognition tasks. As with all transient computation
devices (including LSMs), the LTCM reduces the computational overheads often
required for training classifiers on linearly inseparable problems. This is achieved
by projecting the input space on to the phase space of the Lorenz chaotic attrac-
tor. This projection is modelled by representing each input pattern as a vector
(or a set of vectors) that emerges from a fixed starting point that is within the
basin of attraction of the Lorenz system. The end point of this vector defines
the starting point of the chaotic trajectory to be associated with that input.
Since the vector in phase space is characteristic of the input pattern that gave
rise to it, the trajectory that evolves from the end point of this vector will also
characteristic of the input pattern (this is guaranteed by the chaotic nature of
the attractor). As the trajectory evolves around the chaotic attractor it will
(eventually) come very near to every point on the attractor surface (another
common property of chaotic systems). Therefore, two different trajectories on
the same attractor will repeatedly converge and diverge as they progress around
the attractor, even if they have evolved from very different starting points. Con-
sequently, two input patterns from the same class that are somewhat separated
in input space (as with the two clusters of the diamond class in Figure 1), will
result in two trajectories that repeatedly converge and diverge as they evolve in
time (illustrated in Figure 2). It then becomes a trivial task for a simple linear
readout device observing these trajectories to recognise the points in time when
they are close together. Any input that is similar to either of these patterns
will result in a trajectory that, in the short term, will come close to the points
in phase space where the trajectories caused by the original two patterns con-
verged. Clearly, there are issues concerning the length of the trajectory that is
observed by the readout devices. These have been addressed in detail elsewhere
[4, 1].
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5 Conclusion

The results presented in this paper show that it is possible to create a pattern
classifier by using the property of a chaotic attractor, that the trajectory of
nearby points will diverge over time. The divergence of the trajectories can be
likened to the transformation in a nonlinear kernel of a support vector machine.
The resulting transformed input can be classified by a simple perceptron.

This paper has focussed on the classification of static patterns. We have
also applied the LTCM to classifying time-dependent input signals [9]. Future
work on transient computation will investigate the use of other chaotic attractors
within the NTCM framework.
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