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Abstract. Uncertainty is a popular phenomenon in machine learning
and a variety of methods to model uncertainty at different levels has been
developed. The aim of this paper is to motivate the merits and prob-
lems when dealing with uncertainty in machine learning and to give an
overview about methodologies which fall under the framework of neuro-
fuzzy methods, in particular fuzzy-clustering on the one side and fuzzy
inference systems on the other side.

1 Areas dealing with uncertainty

Uncertainty and fuzziness are popular phenomena in many application areas such
as medicine (medical diagnosis is often not crisp but there exist various degrees
of illness e.g. for psychical diseases such as phobia), image processing (areas
at object borders or at overlapping regions can seldom uniquely be classified),
linguistics (terms such as ‘high’ or ‘small’ are context dependent), etc. Therefore,
uncertainty almost automatically occurs in any application of machine learning.

Different types of uncertainty can be observed: (i) Input data are subject
to noise, outliers, and errors. A machine learning method has to deal with this
type of fuzzy information, showing robustness with respect to such disturbances.
Thereby, input noise can have a positive effect on the generalization behavior
of the machine learning method since the method is forced to develop some
form of invariance and to abstract from the noise. (ii) Output decisions should
be accompanied by a measure which allows to judge the certainty or belief of
the output. This is particularly important in critical domains such as clinical
diagnosis, in safety critical areas, or in semiautomatic systems where human
expert knowledge is accompanied by automatic inference. (iii) Representation
of information within a machine learning system is distributed and fuzzy. This
is the standard situation for classical neural network models and it is difficult
to assign a crisp meaning to specific parts of a neural model. For a deeper
insight into the network behavior, an interpretation of the fuzzy information in
the internal representation is required.

According to these different locations and goals of fuzzy information, a variety
of different models exist which allow machine learning to deal with insecure
information as input, output, or internal representation.
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1.1 Fuzzy-representations
Fuzzy and probability

Uncertainty is closely connected to probability, which (directly or indirectly)
constitutes the formal framework for machine learning and neural network mod-
els. Specifying the probability of an event also gives information about how
certain we are, that this event occurs. However, for probability theory, we need
to specify the probability of all events and applying Bayes rule of inference re-
quires a prior, which is often not known and therefore chosen based on general
principals e.g. as uniform distribution.

The Dempster-Shafer theory of evidence [11, 43] constitutes a generalization
of probability theory which allows a formalization of belief, evidence and possi-
bility. In this theory, it is possible to assign a mass (or probability) m(S) to every
power set of a domain X, expressing the evidence that an element of S C X
occurs, but the same is not believed for a proper subset of S. One can think of
such a universe as a set-valued stochastic variable, called a possibilistic set. The
belief (or necessity) of a set S is given by the sum of the masses of all subsets
of S, whereas the plausibility (or possibility) of S is given by the difference of
1 and the sum of all sets which have a zero intersection with S. These two
quantities span an interval which indicates limits for the probability of S: the
belief gives the minimum evidence supporting S, whereas the plausibility gives
the maximum possible value which is not contradicted by alternative evidence.

Fuzzy sets and operations

The Dempster-Shafer-theory of evidence can serve as a formal background for
fuzzy sets. A fuzzy set A over the domain X is given by its characteristic function
xa : X — [0,1], which can possess degrees of fulfillment in the whole interval
from 0 to 1 in contrast to crisp sets which characteristic function maps to {0,1}.
Every possibilistic set induces a fuzzy set by assigning X > x +— > _sm(S),
the sum of masses of sets which contain x. Unlike a probability distribution,
this can be any function with codomain in [0, 1], it need not be normalized.

It is possible to extend standard operations of sets to fuzzy sets such that
crisp values are preserved [23, 25]. The intersection is modeled by a t-norm which
is an operator T : [0,1]2 — [0, 1] which is associative, commutative, monotonic
in every argument, and which fulfills T(z,1) = = for every z, e.g. the classical
operator min as proposed by Zadeh. The dual, the union, is given by a t-conorm,
which is associative, commutative, monotonic in every argument, and which
fulfills T(x,0) = « for every z, e.g. the classical operator max as proposed by
Zadeh. The complement of a set is usually realized by the function 1 —z. These
choices, however, necessarily yield to extensions of crisp set operations for which
no longer all classical laws hold such as the law of contradiction (A N A = ()
or the law of excluded third (AU A® = X), which are usually not fulfilled for
fuzzy sets and reasonable choices of the t-norm and t-conorm.
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Fuzzy logic

Similar to these extensions of set operations, one can extend crisp 0/1-valued
logic to fuzzy values [23, 25]. The logical ‘and’ is realized by a t-norm, the ‘or’
by a t-conorm, negation by the function 1 — z. For the implication, different
reasonable choices have been proposed. The S-implication identifies a — b and
—a V b. R-implication relies on the observation that a and a — b yield b, thus,
if one knows the degree of fulfillment of ¢ and b, one has to built some form of
inverse of the and-operator to obtain the degree of fulfillment of a — b. This is
achieved by the so-called residuum of the t-norm. The R-implication is defined
as the residuum of a and b with respect to a t-norm. The T-implication uses a
t-norm to evaluate the implication. Note that this is no longer an extension of
the classical implication, however, it is often used in fuzzy inference and fuzzy
control.

These basic operations can be extended to fuzzy inference systems in different
ways. There exists a variety of fuzzy logic calculi (usually restricted to boolean
logic) [23, 25]. Some of these calculi possess an underlying semantic and it
can be shown that they are correct and complete with respect to this semantic,
such as fuzzy resolution or possibilistic inference. Thereby, depending on the
calculus, valid models can be obtained by repeated inference as a fixed point of
the operator which represents logical inference.

One of the most popular inference mechanisms is the compositional rule of
inference: This is not accompanied by an underlying semantic. Rather, the
rule is applied only once to map a fuzzy set over a domain X to a fuzzy set
over a domain Y by means of an inference rule with precedent concerning X
and antecedent concerning Y. More precisely, given a fuzzy set A over X
and an inference rule A’ — B’, it is possible to infer B on Y with xp(y) =
sup, T{xa(x),xa—p(x,y)} where x4 p corresponds to the fuzzy set which
describes the inference and T is a t-norm. This allows to transfer a fuzzy set on
X which is similar to the precedent A’ to a conclusion over Y. The composi-
tional rule of inference is often applied for control or function approximation to
map input values in X to corresponding outputs in Y by means of if-then rules.

Fuzzy arithmetic

A fuzzy number fuzzifies a real number b. Often, triangle sets (a,b,c) which
yield 0 outside the interval (a,c), and which consist of two linear pieces which
map b to 1, or generalizations thereof which substitute the two linear pieces
by a monotonically increasing resp. decreasing function are considered. It is
possible to extend any function on crisp sets to fuzzy sets by means of the so-
called extension principle [23, 25]. Given a function f : X — Y, the extension
f maps fuzzy sets A over X to sets B over Y by means of the equality xp(y) =
sup{xa(z) | f(z) = y}. This way, simple arithmetic operations, but also more
complex functions can be transferred to fuzzy sets.

Usually, it is complicated to compute the extension of a function for a given
concrete scenario unless X is finite, such that the value x ;4 (y) can be deter-
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mined by extensive search over X. For the general situation, the alternative
representation of fuzzy sets via so-called (strict) a-cuts allows to reduce the
computation of the extension to interval arithmetic. The strict a-cut of a fuzzy
set A is given by [A]a = {z | xa(z) > a}. For smooth fuzzy functions over
the real numbers, this is an interval resp. a union of intervals. It is possible to
recover the underlying fuzzy set by the equality xa(z) = sup{a |z € [4],}. It

holds [f(A)]a = f([A]a) for a > 0 and every function f, therefore strict a-cuts
constitute a convenient way to compute the extension of a function f.

Fuzzy information

Which type of fuzzy information is available in machine learning? Naturally,
a variety of probabilistic frameworks exist such as Bayesian belief networks for
causal reasoning [39]. These approaches represent a specific type of fuzzy infor-
mation according to the laws of probability theory. The background in statistics
and probability yields a very powerful theory, at the same time, often quite
complex inference and complex specifications are necessary. Depending on the
setting, it offers an elegant general framework to model complex information.
As an example, the approach presented in [15] proposes a methodology to visu-
alize and data mine tree structures by means of an extension of self-organizing
maps to a generative probabilistic model. Thereby, each lattice point gener-
ates a mode of the data, whereby the generation process (the noise model in
the original generative topographic mapping [5]) is given by hidden Markov tree
models. This point of view offers a general and convenient interface to complex
data structures.

For classification models in machine learning such as the support vector ma-
chine or feedforward networks, there is often a real value available which is
mapped to a crisp output class by means of a threshold, such as the activation
of the output neuron. This can be transferred to a probability of the classifi-
cation after possible normalization. Thus, probability or fuzzy information of
clustering can directly be obtained in these cases. Some models extend this
process towards a richer fuzzy information such as the belief and the possibil-
ity. The approach [16] trains feedforward neural networks directly for a given
classification task, whereby the activation of the network is chosen as possi-
bility. Belief values are obtained thereof by means of the A-complementation
xa(®) = (1 = xac(x))/(1 4+ X - xac(z)). The value X influences the size of the
outcome, and it is determined based on the number of misclassification errors
for the classes. These two values give additional information in the form of an
upper and lower bound of the class probability. Training, however, requires only
crisp class information. Belief and possibility are obtained as additional output
information based on the geometric form and the number of misclassifications
of the trained model.

Some models explicitely deal with fuzzy class labels provided within the
input set such as [48, 49, 50]. This opens the possibility to individually model
the belief of the respective situation independent of assumptions posed by the
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algorithm. The question occurs how fuzzy information can be gained in practice.
For this purpose, specific interfaces have to be designed which allow humans to
easily specify the amount of fuzziness of a decision. The approach [51] deals with
fuzzy information within image segmentation. Thereby, an interactive editor has
been developed which allows humans to specify the borders of crisp segments as
well as the borders of fuzzy segments, whereby automatic interpolation is done
in between. In [33], it is tested in how far the belief of a human decision can be
detected from features generated by an eye tracking system. This study opens
the way towards the automatic generation of degrees of fuzziness by various
human-computer interfaces.

The question of how fuzzy information learned by a computer system is
represented is closely connected to this topic. A fuzzy classification with only
two classes can easily be represented, but the situation is more complex for a
large number of classes. Here, the classes as well as the respective fuzzy value
have to be represented in such a way that they can be distinguished by a human.
The contribution [51] deals with the case that fuzzy class values are assigned to
every pixel within a classified image. Since it is hard to find an unbiased and
easy to distinguish color for more than a few classes, the approach proposes an
embedding of the fuzzy vectors into the RGB space by means of multidimensional
scaling.

1.2 Applications

Applications of neuro-fuzzy systems of various form are widespread. One im-
portant area of application concerns causal reasoning, where fuzzy inference
systems are used. This way, decision support can be applied e.g. in medicine,
stock trading, or credit risk evaluation [7, 54]. A fuzzy inference system can
be interpreted as function approximation mapping input assignments to output
assignments, therefore, fuzzy inference is also applied to scientific explanation,
natural language understanding, isolate faulty components in electronics, infer
dynamical systems, etc. [7]. Fuzzy inference is closely connected to fuzzy logic
control which builds a closed loop control around a control signal which is real-
ized by means of a fuzzy inference. Fuzzy control has been applied in a variety
of settings including among industrial applications toy examples such as the in-
verted pendulum [53] or control of scientific algorithms such as a computational
fluid dynamics algorithm [42]. Since neuro-fuzzy control constitutes an impor-
tant model for real-time applications various hardware realizations have been
proposed such as [2].

Another important class of neuro-fuzzy models is fuzzy clustering. This has
been applied for all kinds of pattern recognition tasks such as robotics space
representation [1] or face recognition [16, 31, 30].

2 DModels dealing with uncertainty

The term ‘neuro-fuzzy model’ covers diverse approaches which differ in the type
of fuzzy information within the network as well as the kind of the fuzzy theory
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which is integrated in the network. Neural network models constitute very pow-
erful mechanisms with good learning and generalization issues, however, most
models have a black box character and it is hard to assign a meaning to single
constituents of a network. On the contrary, fuzzy systems assign a meaning to
single fuzzy values and are easy to understand by humans, but it is difficult to
train fuzzy models. Thus, the properties of fuzzy systems and neural networks
are complementary whereby they share the basic units, real values. Therefore,
a combination of both approaches such that efficient adaptability is combined
with good interpretability seems promising.

One can identify two main directions of neuro-fuzzy systems: models which
are close to pattern recognition methods and which can be centered around
fuzzy clustering on the one hand and models which rely on fuzzy logic inference,
including neuro-fuzzy control as a prime example on the other hand. Besides, a
variety of further proposals exist. These include, for example, a fuzzification of
neural network functions by means of the extension principle such that functions
on fuzzy sets arise. This has been applied to RBF networks in [56] where the
universal approximation property of these models is also discussed. In [30] a
fuzzy support vector machine which can better deal with outliers and noise is
proposed. Basically, the slack variable &; of pattern ¢ is multiplied by a fuzzifier
which accounts for a less sensitivity with respect to points with small fuzzy
values. The fuzziness is thereby determined during training based on geometric
principles. The approach [21] yields better results by computing the fuzzifier
based on distances in the feature space.

2.1 Clustering and pattern recognition
Basic fuzzy clustering

The basic fuzzy-c-means clustering algorithm was introduced by Bezdek as a
generalization of standard vector quantization resp. crisp c-means clustering as
follows [4]: given data points x?, c clusters are defined by prototypes w’ which
represent the cluster centers. Data points can be assigned to the respective clos-
est prototype, or, alternatively, a fuzzy value for the assignment to cluster j can
be based on the distance: x;(z’) = || — & ||~/ @=D /3, ||t — dF||~1/(d-D),
Cluster centers fulfill the equation w’/ = Y, x;(z) %’/ Y, x;(z)?. d > 1
constitutes the fuzzifier, which is usually chosen as 2. Fuzzy-c-means learn-
ing determines weights and assignments based on given training data by iter-
ative optimization of these values, using the above formulas. These formulas
can be derived from the cost function which is minimized by fuzzy-c-means:
> xi(@) 2" — w||? with constraint >, x;(2’) = 1. In an EM like scheme,
fuzzy assignments are optimized for fixed weights and vice versa.

There exist quite a few publications which consider the convergence property
of this algorithm, such as [17] and references therein. This basic algorithm has
been widely applied e.g. in [31] for face recognition, whereby the fuzziness of
the trained classification constitutes an important feature for further processing
which preserves more information than a crisp clustering.
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FExtensions

Basic fuzzy-c-means has been extended in several ways: the algorithm itself
aims at probabilistic clustering in the sense that the sum of fuzzy membership
functions taken over the prototypes adds up to 1 for every pattern. Thus, outliers
are not identified but assigned to the clusters. Possibilistic clustering weakens
the restriction ), x;j(z') = 1 and substitutes it by a different regularization
term. The algorithm of Krishnapuram/Keller adds a term which punishes the
deviation of the fuzzy assignments from 1. However, this only yields a local valid
cost term since identical prototype locations are not prevented.

Davé proposes an alternative which explicitely introduces a ‘cluster of out-
liers” with fixed quantization costs [10]. In [36] possibilistic clustering as a con-
trolled mixture of the proposal of Krishnapuram/Keller and the basic algorithm
is investigated.

Further variants concern more general metrics such as a full adaptive matrix
[14, 18] or more general cluster structures such as varieties or principle compo-
nents [19]. In addition, several extensions of basic-c-means deal with specific
data types such as time series [12] or efficient implementations such as hierar-
chical versions [20].

Fuzzy neural clustering

Variants which extend crisp assignments to fuzzy memberships based on the dis-
tance of data points and prototypes have also been proposed for classical neural
clustering variants such as fuzzy learning vector quantization, which is a fuzzi-
fication of online (unsupervised) vector quantization [9] or fuzzy self organizing
maps which extend the popular self organizing map by fuzzy assignments [3].
Also adaptive resonance networks have been extended to fuzzy memberships.
The comparison of data and prototypes is done using t-norm and t-conorm,
such that rectangular shapes of the clusters result [46]. Fuzzy art has been ap-
plied to, among others, robot navigation [1], robot control [8], and medical image
classification [47].

Fuzzy labeled neural clustering

A different extension of classical neural clustering algorithms has been proposed
in [48, 49, 50]. Here the self-organizing map (SOM) resp. neural gas networks
(NG) are extended such that they can incorporate and learn fuzzy label infor-
mation. For SOM, this allows a visualization of data statistics with respect to
prior label information, such that the important aspects of data are accelerated
for convenient human inspection. Both approaches, supervised fuzzy neural gas
and supervised fuzzy self organizing map are based on an extension of the cost
function of the formalism (thereby considering the self-organizing map in the
variant of Heskes) by an additional term which compares the label information
of data and prototypes. Thus, a very general and uniform approach is obtained
this way.
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Hence, a rich variety of neuro-fuzzy clustering mechanisms exists. Most of
these algorithms constitute prototype-based models which are derived from a
cost function related to the quantization error which is optimized by clustering.

2.2 Symbolic approaches

In contract to these pattern-based approaches, symbolic approaches assign a
meaning to neurons by means of an identification with fuzzy-logic principles.
Basic constituents are neurons which implement a specific t-norm, t-conorm, or
alternative logic primitives. Thereby, smooth parameterization or generalization
e.g. in the form of aggregation has also been proposed [38].

Neuro-fuzzy control

Neuro-fuzzy control implements classical fuzzy control by means of a network
topology. The two control systems which are mostly considered are the Mam-
dani control and the Takagi/Sugeno control. Both controllers are described by
if-then rules of the form: if x; is A; and x5 is A and ...then y is B, whereby
x; are input variables (observations) and y is the output (control signal). A; are
fuzzy sets. For Mamdani control, B is also a fuzzy set, whereas it is given by
an explicit real-valued function f(x1,z2,...) for the Takagi/Sugeno controller.
Given a signal, the control signal is computed by an application of the compo-
sitional rule of inference followed by defuzzification for the Mamdani controller.
For both controllers, the degree of fulfillment of the precedent is computed as
a = T{xa,(x1),xa,(x2),...}, T being a t-norm. This yields the fuzzy output
T{a,xpB(y)} for the Mamdani controller, which is aggregated and defuzzified by
means of the center of gravity. For Takagi/Sugeno control, « serves as a weight-
ing factor for the output function f(x1,zq,...) and these values are aggregated
for all fuzzy rules.

Note that this principle leads to one acyclic application of the fuzzy inference
system resp. neural network representing the fuzzy system to obtain the control
signal. Besides control, this method can also be used for function approximation,
mapping inputs x to desired outputs y. It has been shown for a variety of fuzzy
controllers that they constitute universal approximators [32].

One of the most popular neuro-fuzzy networks is the ANFIS model [40] which
directly implements a Takagi/Sugeno control. It uses RBF neurons in the first
layer to implement the fuzzy sets A;, the product t-norm, and a number of linear
layers to compute the output function, summation and averaging. Overall, the
network function is differentiable such that training can be done using standard
backpropagation. An alternative, NEFCON, implements a form of Mamdani
control [34]. Thereby, connections are assigned fuzzy sets and neurons compute
t-norms resp. aggregation and defuzzification. That means, no standard neurons
are used in this model and depending on the choice of these generalized connec-
tions and neurons, the function is not necessarily differentiable with respect to
the weights. Correspondingly, the training algorithm relies on heuristics.
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For control, the property of stability is essential to guarantee correct behavior
of the model. A variety of methods to guarantee stability for Takagi/Sugeno
control has been developed, mostly based on some Lyapunov function, see [13]
for an overview.

Variants

The question occurs how parameters and rules can automatically be obtained
for neuro-fuzzy models. Training a fixed architecture is done by standard back-
propagation (if the function is differentiable), Hebbian learning, or alternatives
such as SVM like methods which include regularization [28]. The network struc-
ture, i.e. the rules can be obtained by metaheuristics such as genetic algorithms
[27, 35] or appropriate initialization based on given data such as fuzzy clustering
[37] or Bayesian inference [22]. Note that these methods can also directly be
used in data mining in order to extract fuzzy rules from given data.

Another Takagi/Sugeno approach is based on SOM and Kohonen’s learning
vector quantization (LVQ) [52], whereby the prototypes here describe fuzzy rules,
which are composed of fuzzy sets. The fuzzy sets define an area in the input
space, where each fuzzy rule fires. First, the SOM is trained to detect the fuzzy
sets roughly. A subsequent modified LVQ fine tunes the fuzzy sets and, parallely
optimizes the output for each rule.

Neural networks have not only been applied to learn the control but also to
approximate the underlying process which has to be controlled if this is not avail-
able analytically, such as in the case of a permanent magnet linear synchronous
motor [29]. Interestingly, these type neuro-fuzzy networks can be applied for
function approximation and, thus, also clustering as proposed in [26], so-called
min-max clustering. The approach [44] proposes a transductive variant of the
ANFIS model which considers only the k-nearest neighbors for the output of a
data point. This has the benefit that a very simple control consisting of only
one rule and a linear output function is sufficient for these local patches. Fur-
ther variants such as hierarchical neuro-fuzzy control [6] or recurrent neuro-fuzzy
networks which also include network outputs through time delay units [57] have
been proposed.

Fuzzy associative memory

Naturally, one step logical inference as occurs in fuzzy control can also directly
be used for decision support and fuzzy inference, as presented e.g. in [55], where
rules are optimized by means of particle swarm optimization. Fuzzy associative
memories are very similar with respect to the function [45]. These models asso-
ciate a given input  to an output y by means of fuzzy-logical operations. They
combine neurons which implement t-norm resp. t-conorm as a realization of log-
ical ‘and’ and ‘or’. In [45] the logical implication is realized as R-implication
which guides learning. Interestingly, convergence of association can be guaran-
teed also when iterating the process due to the monotonicity of the involved
fuzzy-logical operators t-norm and t-conorm.

87



ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

Fuzzy inference systems

Neuro-fuzzy logic reasoning directly transfers fuzzy logic concepts into a neural
network model, the activation of single neurons encoding degrees of fulfillment
of fuzzy logic terms. The difference to neuro-fuzzy control and simple inference
consists in the fact, that complex reasoning systems include iterative or cyclic
processes which mimic the iterated or recursive application of inference steps.
Thereby, non-classical effects such as additive positive interaction of evidence for
a given fact can easily be modeled. The convergence of such reasoning systems
either transfers from the convergence property of the underlying fuzzy logic
system, or alternative guarantees have to be found. A popular possibility to
guarantee convergence consists in the connection to an energy function which is
minimized by consecutive logical inference steps such as proposed in [41].

Overall, a variety of neuro-fuzzy systems which are based on some form of
symbolic fuzzy logic exists. Apart from their success in practice, these models
can serve as an interface towards human understandable interpretation of neural
networks.

3 Conclusions

We have presented a variety of formalisms in fuzzy logic and their combination
with neural networks. These models differ in the type of fuzzy theory which is
integrated into the neural system ranging from a direct fuzzification by means
of the extension principle to fuzzy clustering and fuzzy control systems. These
diverse directions indicate the widespread techniques which exist in this domain
which open the way towards interesting industrial and scientific applications.
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