
Deploying SDP for machine learning

Tijl De Bie∗

Katholieke Universiteit Leuven, OKP Research Group,
Tiensestraat 102, 3000 Leuven, Belgium.

University Of Bristol, Dept. of Engineering Mathematics,
Queen’s Building, University Walk, Bristol, BS8 1TR, UK.

Abstract. We discuss the use in machine learning of a general type of
convex optimisation problem known as semi-definite programming (SDP)
[1]. We intend to argue that SDP’s arise quite naturally in a variety of
situations, accounting for their omnipresence in modern machine learning
approaches, and we provide examples in support.

1 Introduction

The recent flourishing of convex optimisation in machine learning has probably
been sparked by the invention of the Support Vector Machine (SVM) [2]. It
was quickly recognised that this classification method matches Neural Networks
classifiers (NN) in flexibility, while it outclasses them in at least two ways. First,
the SVM objective is convex and can be optimised on polynomial time, whereas
the NN objective is non-convex and hard to optimise. And second, empirically
SVM classifiers are often observed to generalise better than NN classifiers.

Another research domain in which this paper is rooted is combinatorial opti-
misation. One approach to combinatorial optimisation is to loosen, i.e. to relax
the difficult combinatorial constraints, so as to arrive at a convex optimisation
problem [3, 4]. Then, an approximate solution of the unrelaxed original problem
can be derived from the exact global solution of the relaxed problem by ‘project-
ing’ the relaxed solution on the unrelaxed constraint set. This approach often
comes with theoretical guarantees in terms of computation time and approxima-
tion quality. Also empirically the results are often strikingly good.

Both these successes have inspired machine learning researchers, in particular
those active in kernel methods, to focus on algorithms that can be phrased as
or relaxed to convex optimisation problems. In this paper, we will focus on the
class of semi-definite programming (SDP) problems as a rich subclass of convex
optimisation. SDP’s have recently received considerable attention both from
within machine learning (mainly interested in using SDP as a black box tool),
as well as from the convex optimisation community in designing efficient SDP
solvers (hence designing the internal wheels that drive this black box). As we
will see in this paper, this unique combination of technology push and market
pull has led to interesting scientific results with practical applicability.

This paper intends to provide a non-exhaustive overview of the use of SDP
in machine learning. Besides that, one small section is devoted to the technology
used to solve SDP’s efficiently, and contains pointers to freely available solvers.

∗This work is supported by CoE EF/05/007 SymBioSys, and GOA/2005/04, both from the
Research Council K.U.Leuven. We are indebted to Nello Cristianini for insightful discussions.

205

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



2 Semi-Definite Programming as a template problem

The distinguishing ingredient of a SDP’s is a matrix inequality constraint. For F
a square symmetric matrix, with the matrix inequality F � 0 we mean that all
eigenvalues of F are nonnegative, and we say that the matrix F is constrained
to be positive semi-definite (PSD), or that F belongs to the cone of positive
semi-definite matrices. Then, a general SDP problem can be written as:

minx a′x,
s.t. F0 +

∑n
i=1 xiFi � 0,

B′x = 0.

We should stress that, despite its apparent simplicity, this problem encompasses
large classes of convex optimisation problems, such as linear programs (LP),
convex quadratic programs (QP), second order cone programs (SOCP), and
more. See [1] for an excellent overview of the flexibility of SDP’s.

In particular, if all Fi have the same block-diagonal structure, the PSD
constraint is equivalent to a set of PSD constraints on each of the blocks of
F0 +

∑n
i=1 xiFi. If such a block is of size 1 × 1, the PSD constraint for that

block reduces to a linear inequality constraint. Furthermore, if such a block has
size 2 × 2, the PSD constraint reduces to a quadratic constraint. For example:(

1 x2

x2 x1

)
� 0 ⇔ x1 ≥ x2

2. This example is in fact a special case of an

extremely useful lemma, known as the Schur complement lemma.

Lemma 1 (Schur complement lemma) For symmetric A � 0 and C � 0:

C � BT A−1B ⇔
(

A B
BT C

)
� 0.

In practice, it is convenient and more efficient to specify separate linear,
quadratic, and PSD constraints, rather than subsuming them into one block-
structured PSD constraint. We will do this in the sequel of this paper.

3 SDP in machine learning

3.1 Finding the right kernel matrix

Let us consider a data set X = {x1, x2, · · · , xn}. Kernel methods are designed to
find patterns in such data without making explicit use of the data representations
xi. Instead they rely solely on the use of kernel function evaluations between
pairs of data items xi and xj , a kernel function being defined as a symmetric
and positive semi-definite function k : X 2 → R : (xi, xj) → k(xi, xj).

For a given data set X = {x1, x2, · · · , xn}, all kernel evaluations between
all pairs of data items are usually summarised in a single n × n kernel matrix,
denoted by K, with K(i, j) = k(xi, xj). By the positive semi-definiteness of k,
we know that K � 0 for any data set X. In practice, it often suffices to know
that K � 0 on the training data, or on the training data and test data together
(when these test data are available).

206

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



3.1.1 Data fusion

A major issue in kernel methods is the choice of the kernel function. Depend-
ing on the data type, various options exist, and model selection techniques are
required to make a choice. However, an alternative approach is less drastic,
and aims at combining several plausible choices rather than selecting just one.
Assume that several kernel matrices K1,K2, . . . ,Km are given, computed with
different kernel functions k1, k2, . . . , km. Then, a new kernel matrix that inte-
grates information from each of these individual matrices can be computed as a
linear combination:

K =
m∑

i=1

µiKi.

For this kernel to be valid, it needs to be positive semi-definite. Thus one
sees that the constraint

∑m
i=1 µiKi � 0 naturally arises here, and subject to

this constraint the weights µi can be chosen so as to optimise a performance
criterium, such as a statistical bound.

This strategy has been developed first in [5] and applied in [6] in a classi-
fication setting. Let M(K,y) be the size of the margin achieved by an SVM
classifier for a kernel K and label vector y (see left box below for a formal defi-
nition in terms of the dual SVM formulation). Then a data fusion method that
maximises this margin is given by the right box below:

1
M(K,y)2 = maxα 2 · 1′α − α′(K � yy′)α

s.t. y′α = 0
α ≥ 0

minμ
1

M(K,y)2

K =
∑

µjKj

trace (K) = 1
K � 0

Clearly, this formulation is not yet in the standard SDP form shown in Section
2. However, using duality theory and the Schur complement lemma it may be
reformulated as such [5]. Space requirements force us to omit the details here.

3.1.2 Reducing diagonal dominance of a kernel matrix

Besides for data fusion, SDP is handy in adapting the kernel matrix slightly in
order to satisfy some criterium. For example, certain kernel matrices are known
to be strongly diagonal dominant, which may hamper learning in certain cases.
In that case, SDP provides a means to adapt the kernel matrix by subtracting a
diagonal matrix from it, which is as large as possible while leaving the resulting
matrix PSD. A suitable reformulation of this problem in optimisation terms
leads to the following SDP [7]:

mind −1′d,
s.t. K − diag (d) � 0.

3.2 Relaxations of labelling problems

Let us now discuss a totally different use of SDP in machine learning.

207

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



3.2.1 Clustering based on the normalised graph cut

Consider an undirected weighted graph over a set S of n vertices xi, with weights
aij ≥ 0 between xi and xj summarised in a symmetric affinity matrix A. Vertices
connected with a larger edge weight are assumed to be more similar in some
sense, and conversely, dissimilar points are connected by an edge with small
edge weight. Our goal is to arrive at a bipartitioning of the vertices so that
similar vertices are grouped together, and dissimilar vertices are separated.

Satisfying the former condition (to group similar points) is easily achieved by
searching for a bipartitioning of S into two disjoint sets N and P that minimises
the sum of the weights of edges connecting a vertex in one cluster (N ) with
one in the other (P). Clearly, simply minimising this so-called cut cost is not
sufficient, as the minimum is trivially achieved by assigning all data points to
one single cluster. However, combining this objective with the latter condition
solves this problem, i.e. by simultaneously forcing the bipartitioning to separate
dissimilar vertices. In practice this can be achieved by enforcing that neither
of the clusters becomes too small. Both these aspects can be jointly taken into
account by minimising the so-called normalised cut cost, defined as:

cut(P,N )
assoc(P,S)

+
cut(N ,P)

assoc(N ,S)
=

(
1

assoc(P,S)
+

1
assoc(N ,S)

)
· cut(P,N ),

where cut(P,N ) = cut(N ,P) =
∑

i:xi∈P,j:xj∈N aij is the cut between sets
P and N , and assoc(P,S) =

∑
i:xi∈P,j:xj∈S aij the association between sets P

and the full sample S.
To get a handle on this cost function, let us reformulate it into algebraic terms

using a label vector y ∈ {−1, 1}n (indicating cluster membership), the affinity
matrix A, the degree vector d = A1 and associated matrix D = diag(d), and
shorthand notations s+ = assoc(P,S), s− = assoc(N ,S), and s = s+ + s−.
Note that cut(P,N ) = (1+y)′

2 A (1−y)′

2 = 1
4 (−y′Ay + 1′A1) = 1

4y
′(D − A)y.

Furthermore, s+ = assoc(P,S) = 1
21

′A(1+y) = 1
2d

′(1+y) and s− = 1
2d

′(1−y).
Then we can write the minimisation of the normalised cut cost as:

miny,s+,s−
s

4s+s−
· y′(D − A)y

s.t. y ∈ {−1, 1}n, d′y = s+ − s−, s+ + s− = s.

Unfortunately, this is a provably hard optimisation problem. However, it can be
approximated by means of relaxation techniques. The first relaxation described
for this problem is a spectral relaxation [8]. More recently, we have developed a
tighter relaxation that is based on SDP [9]. We briefly summarise the derivation.

Using Γ = yy′ we can write an equivalent optimisation problem:

minΓ,s+,s−
s

4s+s−
〈Γ,D − A〉

[
where 〈X,Y〉 � trace (X′ · Y)

]
s.t. Γ = yy′, y ∈ {−1, 1}n,

〈Γ,dd′〉 = (s+ − s−)2 = (s+ + s−)2 − 4s+s−,
s+ + s− = s, s+ > 0, s− > 0.

Note that these constraints imply that Γ′ = Γ � 0 and diag(Γ) = 1. Hence
we can relax the constraint set by adding these two redundant constraints, and

208

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



dropping Γ = yy′ and y ∈ {−1, 1}n. If we further substitute q = s2

4s+s−
and

Γ̂ = qΓ, we get the following SDP relaxation of the normalised cut minimisation:

min
�Γ,q 〈Γ̂, D−A

s 〉
s.t. Γ̂′ = Γ̂ � 0, diag(Γ̂) = q1, 〈Γ̂, dd′

s2 〉 = q − 1.

In order to derive a valid label vector y based on the relaxed label matrix Γ̂
various techniques are available, as discussed in e.g. [4, 9].

3.2.2 Transduction based on the normalised cut

Interestingly, this optimisation problem can be adapted in order to satisfy a
given set of constraints on the labels (i.e., part of the labels are given to be 1 or
−1). This leads to an algorithm to cluster subject to constraints, also known as
transduction in the machine learning terminology. Enforcing label constraints
can be done explicitly on the label matrix Γ̂, or more efficiently by ensuring the
constraints will hold constructively by reparameterising the label matrix [9].

In the transduction case, minimising the normalised cut cost can be regarded
as a form of capacity control (the normalised cut cost being a regulariser).
Searching for a label vector compatible with the training labels and with a small
cost must ensure generalisation towards the unlabelled points, as shown in [10].

3.2.3 SVM transduction

A more common approach to transduction is based on SVM’s, and is a hard
combinatorial problem as well. Interestingly, it can be addressed using a similar
relaxation approach, as shown in [11, 12].

4 On the theoretical and practical complexity of SDP’s

We have argued that SDP’s form a broad class of optimisation problems, in-
cluding LP’s, convex QP’s, and SOCP’s. Obviously, such a generality comes
at a price. While the worst case complexity of interior point solvers for SDP’s
is provably polynomial, it is so with a high exponent: the complexity depends
quadratically on the number of variables, and polynomially with an exponent of
roughly 2.5 in the size of the PSD matrix.

Nevertheless, excellent interior point solvers for SDP’s are available, such as
SeDuMi [13] and SDPT3 [14]. Furthermore, in practice dedicated methods may
exploit the problem structures to yield significantly faster methods. Additionally,
tight approximation techniques may allow for dramatic speed-ups, as we have
shown in [9]. Consequently, problems such as normalised cut cost clustering and
transduction (3.2.1 and 3.2.2) can be solved for many thousands of vertices.

Additionally, recently a general purpose SDP solver has been developed that
seems considerably faster and more memory efficient than standard interior point
solvers, see e.g. [15]. One may hope that such breakthroughs may one day render
SDP’s as generally applicable as LP’s are today.

209

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



5 Conclusions

We have provided a non-exhaustive list of SDP applications in machine learning.
We had to omit discussions of other uses, such as for approximate inference
in graphical models [16], distance metric learning [17], sparse PCA [18], kernel
matrix completion [19], nonlinear dimensionality reduction [20], and much more.

References
[1] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95,

1996.
[2] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cam-

bridge University Press, Cambridge, U.K., 2000.

[3] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115–1145, 1995.

[4] C. Helmberg. Semidefinite programming for combinatorial optimization. Habilitationss-
chrift ZIB-Report ZR-00-34, TU Berlin, Konrad-Zuse-Zentrum Berlin, 2000.

[5] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning
the kernel matrix with semidefinite programming. JMLR, 5:27–72, 2004.

[6] G. Lanckriet, T. De Bie, N. Cristianini, M. Jordan, and W. Stafford Noble. A statistical
framework for genomic data fusion. Bioinformatics, 20(16):2626–2635, 2004.

[7] J. S. Kandola, T. Graepel, and J. Shawe-Taylor. Reducing kernel matrix diagonal domi-
nance using semi-definite programming. In COLT’03, pages 288–302, 2003.

[8] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[9] T. De Bie and N. Cristianini. Fast SDP relaxations of graph cut clustering, transduction,
and other combinatorial problems. JMLR, 7:1409–1436, 2006.

[10] P. Derbeko, R. El-Yaniv, and R. Meir. Explicit learning curves for transduction and
application to clustering and compression algorithms. JAIR, 22:117–142, 2004.

[11] T. De Bie and N. Cristianini. Convex methods for transduction. In NIPS’03, pages 73–80,
2004.

[12] T. De Bie and N. Cristianini. Semi-supervised learning using semi-definite programming.
In O. Chapelle, B. Schoëlkopf, and A. Zien, editors, Semi-supervised learning. MIT Press,
Cambridge-Massachussets, 2006.

[13] J.F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software, Special issue on Interior Point Methods (CD sup-
plement with software), 11-12:625–653, 1999.

[14] R. H. Tütüncü K. C. Toh, M. J. Todd. Sdpt3 — a matlab software package for semidefinite
programming. Optimization Methods and Software, 11/12:545–581, 1999.

[15] S. Burer and R.D.C. Monteiro. A nonlinear programming algorithm for solving semi-
definite programs via low-rank factorization. Mathematical Programming (series B),
95(2):329–357, 2003.

[16] M. J. Wainwright and M. I. Jordan. Log-determinant relaxation for approximate inference
in discrete markov random fields. IEEE Transactions on Signal Processing, 54(6):2099–
2109, June 2006.

[17] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with
application to clustering with side-information. In NIPS’02, pages 505–512, 2003.

[18] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formulation
for sparse PCA using semidefinite programming. In NIPS’04, 2004.

[19] T. Graepel. Kernel matrix completion by semidefinite programming. In Proc. of
ICANN’02, volume 2415/2002. Springer Berlin / Heidelberg, 2002.

[20] W. Weinberger, B. Packer, and L. Saul. Nonlinear dimensionality reduction by semidefi-
nite programming and kernel matrix factorization. In Proc. of AISTATS’05, 2005.

210

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.


