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Abstract. Canonical Correlation Analysis(CCA) is a useful tool to dis-
cover relationship between different sources of information represented by
vectors. The solution of the underlying optimisation problem involves a
generalised eigenproblem and is nonconvex. We will show a sequence of
transformations which turn CCA into a convex maximum margin prob-
lem. The new formulation can be applied for the same class of problems
at a significantly lower computational cost and with a better numerical
stability.

1 Introduction

In machine learning one of the most important questions is how one can guar-
antee satisfactory performance of a learner on earlier unseen cases. To be more
precise, let us define the (supervised) learning problem in the following way. The
learner receives a subset of ordered pairs (a sample) S = {(x;,y:), i =1,...,m}
from the direct product (S €)X x V. We will refer to the domain as the input
and to the set of values as the output in the sequel. The task is to find a function
f: X — Y for which f(z) = y. To this end, one specifies a function class from
which f can be chosen, and within this function class the f which minimises
an approximation error on S is sought for. This search can generally be accom-
plished by formulating and solving an optimisation problem. The main building
blocks of such an optimisation problem usually are: a loss function which mea-
sures the approximation error f makes on S, and a regularisation term which
restricts the functions space f is chosen from. Both these ingredients can be
either terms in the objective function or constraints in the optimisation task.
How to find a proper function f in a given learning problem depends on
the type of input and output space. If both are vector spaces, then we need
learning methods that search for vector valued functions. For this purpose in
classical statistics some regression based approaches have been developed. One
of those tools is Canonical Correlation Analysis (CCA), which can be regarded
as an extension of the Multivariate Linear Regression (MLR), where not only

*Supported by the European Community Projects SMART and PASCAL

211



ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

the input but also the output may have several components, i.e. belongs to
a higher dimensional vector space. MLR tries to find a linear combination of
the input variables that maximises the correlation between the output variable
and this linear combination. CCA looks for linear combinations of the input
variables and the output variables that maximise the correlation between these
linear combinations. The reader can consult to [1] and [5]. Both references give
the kernelization of CCA referred to as KCCA.

In this paper, we will elucidate a connection between CCA and maximum
margin learning. We will assume that X and ) are vector spaces. Our goal is
to start from CCA and, by gradually transforming it, to arrive at a maximum
margin learning problem that searches for a linear function f that maps inputs
to outputs as given by y = f(x) = Wx, where W is a matrix or more generally a
linear operator. The accuracy of a function f will be measured by the covariance
between the real output y and its prediction Wx. And lastly, the result will be
invariant with respect to scalings of the input and the output vectors.

To arrive at this maximum margin formulation, we will borrow some inspira-
tion from a game theoretic scenario. In this scenario the learner (the first player)
competes with nature (the other player), in trying to find the best function. Na-
ture tries to present the learner with cases where the predictor function behaves
poorly, thus forcing the learner to build up the most generally reliable function.
A very recent book following this approach is [3].

The game behind the learning task accumulating all the aforementioned
building blocks can be formalised as a minimax optimisation problem

min, max, L(w,a) (1)
s.t. w €D, a€Dg,,

where D, and D, cover the allowed strategies of the learner and nature. Often
the function L may be regarded as a Lagrangian functional, with w the primal
and « the dual variables. Hence, the minimax formulation can express a very
wide range of reasonable optimisation problems. This minimax problem is con-
vex if L is convex in w and concave in «. Some of the most recent algorithms to
solve the convex minimax problem are built around the extragradient method for
solving variational inequalities, a further generalisation of the minimax schema,
see for example [9] and [8]. These algorithms can tackle with very large scale
problems in reasonable time.

2 From CCA to Maximum Margin Learning

Consider the supervised learning problem where we are given a sample {(x;,y;),
i=1,...,m} withx; € X, y; € Y and X, linear vector spaces, both equipped
with a bilinear inner product. With X and Y we will denote matrices containing
the output and the input vectors in their rows respectively. Otherwise all vectors
are column vectors. 1 is a vector of ones and 0 is a vectors of zeros. || - || denotes
the ¢5 norm of the vectors in its argument. In what follows we assume that
the output and input vectors are centred: 17x; = 0 and 17y; = 0 for any
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i=1,...,m. ||A]lr denotes the Frobenius norm of matrix A and (A,B)r =
trace(ATB) is the Frobenius inner product. The notations for matrices are
capitalised, and matrices and vectors are bold Latin or Greek characters.

CCA is formalised by the following optimisation problem:

(Yw,, Xw,) @)
Y wy [ Xw ||

maXy, w, corr(Yw,, Xw,) = max,,,,

We will start from this formulation, and gradually transform it into a maximum
margin problem. The first step in the metamorphosis is a simple reformulation
to follow the linear prediction schema we put forward in the introduction:

(Yw,, Xw,) (Y, Xw,w])p
= T .
Y wy [[[| Xw | 1Y plXwow] |

With this step the correlation between vectors is transformed into correlation
between matrices. The numerators of both expression are equal to each other.
Thus, the covariances, the unnormalised correlations, are equal. By substituting

W for w,w, . we arrive at what we call RegressiveCCA(RCCA). Now note that

. (Y XW)p Y IE X W
¢ MaXyi; = argmin .

. W -
Y[ XW]| £ (Y, XW)p

This is a fractional programming problem. Assuming that (Y, XW) F>A>0,
this can be reformulated into a conditional optimisation problem (see e.g. [2]):

o1 5
min  +|[Y[r[|XW]|r

. (3)
st (Y, XW)p >\

Let W = W/ and let the constant factor || Y ||z be dropped, then we get

min || XW]|p )
st (Y, XW)p > 1,

a linearly constrained convex optimisation problem since the Frobenius norm
is a convex function. It contains a data dependent regularisation term in the
objective and a maximum margin constraint to force a high covariance whilst
reducing the capacity of the learner. This task can be solved efficiently as a
second order cone programming problem (see [6, 2]). Remember that when we
unfolded the fractional problem in (3), we assumed that there is a A that is
strictly positive. When this is not the case, the constraint in (4) is infeasible.
To solve this problem, we can introduce a slack variable in a similar way as in
the soft margin formulation of Support Vector Machines (SVM’s). This leads to

min | XW/||p + C¢ (5)
st (Y, XW)p >1-¢,

where C' is a penalty constant balancing between the regularisation and the error
expressed by £. This is a first efficiently solvable convex variant of CCA.
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2.1 An SVM style solution

In this subsection, we further reformulate the optimisation problem, guided by
game theoretic arguments as outlined in the introduction. In particular, we will
formulate the problem as a minimax optimisation problem of the cost function,
with the maximum taken over all strategies of nature, and the minimum over
all strategies of the learner. To this end we first change the data dependent
objective function |[XW/| r into a data independent one 1[[W|%. Now, note
that the constraint in (4) can be expressed as sum of terms corresponding to the
sample items
(Y, XW)r =37 (vi, Wx;).

Then we write the following cost function as a function of a strategy a of nature:
L(W.a) = [WIH = S0 ailys Wxi) + X7
(07 ZO, 1= 1,...,m.

9

Regarding L(W, at) as a Lagrangian, we can write the primal problem as

min 1 W]}

st. (yi, Wx;) >1,i=1,...,m.
Hence, we have a minimax based maximum margin learner for arbitrary output
vectors taken from any abstract linear space. Note that we can opt to incorporate
slack variables, to allow some items to violate the general rule. Below we present
the resulting problem parallel to the SVM learning problem, to highlight the
similarities. In this general formulation, we allow that the input and output
items are not taken directly from a linear vector space: they may be embedded
by the functions 1 and ¢ into proper vector spaces denoted by H, and H.

Binary class learning Vector label learning
Support Vector Machine(SVM)| Maximum Margin Robot(MMR)
min  §|wl[|? +C17¢ SIWIIE +C17¢
w.r.t.w:Hy — R, normal vector W :'Hy — Hy, linear operator
& € R™, error vector & € R™, error vector
st ywl(x) > 1-6& By, Wolxi)),,, >1-&
£E>0,i=1,...,m £E>0,i=1,...,m

Both problems imply duals with the same structure and computational com-
plexity.

[ P
Ky Kij

max 31 i — 5 00 oy (B(xi), d(x)) (B (vi), ¥ (v5))
wrt. «a; €R,
s.t. 0<; <C,i=1,...,m.

The predictor function in the vector learning case is given by

y <=y =agy(y) = Who(x) = 31, aip(yi) (9(x:), d(x)),
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as linear combination of the known label vectors. If the outputs are not explicitly
given then we need to solve pre-image problem. It can be solved by

y = argmax, . (¥(yt), ¥(¥)), (6)

where ) is a set of possible outputs. This inversion makes sense if ) is a finite
set with reasonably small size or Y satisfies some simple and convex constraints,
e.g. it is a hyperplane or a ball. We should also assume that the vectors in the
inner product are normalised to the same length.

3 Experiment

We present an image-text retrieval experiment. The source of the data is an
annotated set of images, 695 items, from the University of Washington.! To each
image a set of words is attached expressing the most characteristic properties of
the images, e.g. if the image shows a garden then the words are: flowers, trees,
grass etc. The number of words describing the images varies over the images.

The information conveyed by the images was transformed by the following
procedure. For each image the so called SIFT features [7] were computed and
those features were classified by k-means clustering. Based on this a dictionary
of “visual words” was built up. The feature vector of an image in the experiment
contained a histogram of the visual words detected on the image, as in [4]. On
the other hand, the textual annotation was preprocessed as well, e.g. words were
changed from plural into singular. Then, the word indicators give the labels to
the images. As a result, we had 132 textual words and 3000 visual words to
characterise the images.

In the test we considered the image features (the visual words) as inputs,
and the descriptor words were predicted. The accuracy was measured by the
proportion of the correctly predicted words for all images. In the test a ten fold
cross validation procedure was applied. To estimate the best parameters for the
polynomial and the Gaussian kernels the training set was split into validation
training and validation test sets. The parameters providing the highest result in
the validation had been chosen and applied on the test set at the end.

Table 1 summarises the result. The convex variants are faster and generally
significantly more accurate than the KCCA, furthermore they are much less
sensitive on ill-conditioned kernel matrices, which may not be exactly positive
definite because of numerical reason.

4 Conclusion

We give convex alternatives to the CCA method to the problems where both
the inputs and outputs are vectors. These methods could be seen as regression
approaches and they can be extended to solve problems arising in statistics,
e.g. General or Generalized Linear Model type of problems. Our assumptions

Lwww.cs.washington.edu/research/imagedatabase/groundtruth
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Method  Properties Precision Recall F1 Comp. Time(s)
KCCA  Linear, 10 factor 14.9(1.4) | 36.4(1.5) | 40.2(1.3) 0.59
KCCA  Poly(2,0), 10 factor | 43.2(2.5) | 34.9(2.3) | 38.6(2.3) 0.59
KCCA  Gauss(0.8), 10 factor | 25.3(10.4) | 20.2(8.2) | 21.8(7.7) 0.58
MMR  Linear, unnorm. 24.3(1.8) 32.1(3.2) | 27.6(2.2) 0.03
MMR  Linear, norm. 45.7(1.1) 37.9(2.1) | 41.4(1.4) 0.39
MMR  Poly(5,0), norm. 51.1(1.8) | 50.1(2.2) | 50.6(1.9) 0.18
MMR  Gauss(0.25), norm. 50.0(2.6) 49.4(1.6) | 49.7(1.4) 0.11
Random baseline 3.63

Table 1: Precision, Recall and F1 measures provided by the different methods
are in percentages and the computational times in seconds. () contains the
corresponding Standard Deviation. Properties show the types of the kernels,
the number of the factors considered in KCCA, and when the data vectors were
or were not normalised to the length of one. The time data is received by matlab
code on a Pentium machine of 3.5 GHz.

involve similarities measured in angles instead of distances. They move the
regression type problems from Euclidian space into Projective geometry and the
deep understanding of this movement is an important task for future research.
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