
Several ways to solve the MSO problem

J. J. Steil - Bielefeld University - Neuroinformatics Group
P.O.-Box 10 01 31, D-33501 Bielefeld - Germany

Abstract. The so called MSO-problem, – a simple superposition of two
or more sinusoidal waves –, has recently been discussed as a benchmark
problem for reservoir computing and was shown to be not learnable by
standard echo state regression. However, we show that are at least three
simple ways to learn the MSO signal by introducing a time window on the
input, by changing the network time step to match the sampling rate of
the signal, and by reservoir adaptation. The latter approach is based on
an universal principle to implement a sparsity constraint on the network
activity patterns which improves spatio-temporal encoding in the network.

1 Introduction

Reservoir computing is a new approach to signal processing with recurrent net-
works by implementing a kernel-like idea for time dependent signals. In its
original form introduced by Jaeger [1] for standard sigmoid neurons, the idea is
to drive a fixed recurrent network by input, regard the high dimensional network
state as time dependent feature vector coding for the driving input, and then
analytically compute a linear output function by linear regression, see Fig. 1.
Though it has been shown that difficult benchmark tasks in time series pre-
diction can be solved with this approach, the power of this method obviously
depends on the properties of the fixed recurrent network, the reservoir. As of
today, there are no systematic methods to quantify the information processing
capacities of nonlinear recurrent networks. Therefore approaches and networks
are often compared by applying them to certain benchmark tasks. In this con-
text, it has been argued that the so called MSO problem is difficult to solve with
the standard ESN approach.

The MSO problem is the task to learn a simple superposition of sin waves

y(k) = sin(0.2k) + sin(0.311k).

Recently in [2], it was shown that an evolutionary evolved reservoir network can
recursively predict this combination of sinusoidal signals. However, evolutionary
optimization in itself is a complex technique, which dispenses with one of the
main ingredients of the reservoir approach – its simplicity. A further approach
has successfully solved the problem by utilizing decoupled multiple reservoirs
connected by weak inhibition [3]. This approach externalizes the problem to rec-
ognize the different base frequencies and leaves the question unresolved, which
kind of signals can be learned within a single reservoir. Both approaches dis-
cussed measure the performance for the period immediately following the start
of recursive mode. However, for standard ESN regression, the experience shows
that many networks diverge very quickly, which is possible because after recur-
sively connecting there is an unbounded linear subloop present in the network.

489

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.1 0.2 0.3 0.4 0.5 0.6

N
M

S
Q

E

time step

recursive MSO prediction

200 steps
600 steps

1000 steps

Figure 1: a) The echo state network with nonlinear reservoir and readout func-
tion < w,y >. b) NMSQE (log-scale) for recursive prediction of 1000 time steps
vs. network time step ∆k.

Even worse (H. Jaeger, personal communication), the networks performing well
initially in most cases diverge in the long term. We show a solution to this
problem in Section 6.

2 Recurrent reservoir dynamics

In the following, we consider the recurrent reservoir dynamics

x(k+∆k) = x(k) + ∆k [−x(k) + Wresf(x(k)) + Wuu(k)] , (1)

where xi, i = 1, . . . , N are the neural activations, Wres ∈RN×N is the reservoir
weight matrix, Wu∈RN×R the input weight matrix, and k is the discretized time
with time step ∆k. Let u(k) = (u1(k), . . . , uR(k))T the R-dimensional vector of
inputs. Throughout the paper we assume that y = f(x) is the vector of neuron
activities obtained by applying parameterized Fermi functions component wise
to the vector x as

yi = fi(xi, ai, bi) = 1/
(
1 + exp(−aixi−bi)

)
. (2)

In the following sections, we follow the standard procedure to train an echo state
network. All networks are generated with 10 internal recurrent connections per
node on average, i.e. 10% connectivity for a 100 neuron network, and 50% input
connectivity in Wu. All weights are initialized with uniform distribution from
the interval [−0.02,+0.02]. Networks subject to standard ESN regression are
rescaled to have 0.8 spectral radius, networks using reservoir adaptation are not
rescaled, i.e. have initially very small weight matrix eigenvalues. We first iterate
the network driven by input for 1000 steps, then record the network states y(k)
for the next 1000 steps together with the target output d(k), which in this case is
a one-step-ahead prediction of the MSO input signal. Then we perform a linear
regression for the output weights wout such that the network output is d̂(k) =<

490

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0 100 200 300 400 500 600 700 800 900 1000

N
M

S
Q

E

prediction

recursive MSO prediction, 100 nodes, 10% connectivity

his 5 (18/50)
his 9 (28/50)
his 13 (29/50)
his 14 (40/50)
his 15 (28/50)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0 100 200 300 400 500 600 700 800 900 1000

N
M

S
Q

E

prediction

recursive MSO prediction, 100 nodes, 10 epochs intrinsic plasticity

his 5 (36/50)
his 9 (30/50)
his 13 (31/50)
his 14 (30/50)
his 15 (43/50)

Figure 2: Mean NMSQE for 50 runs of recursive prediction. Errors are computed
every 20 steps of recursive prediction after ESN regression for 100 neuron reser-
voir network. Left: direct regression, right: regression after 10 epochs (= 100000
steps) of intrinsic plasticity training. Number of converged runs in brackets.

wout,y(k) >. Finally, we reconnect the output to the input u1(k +1)← d̂(k) to
let the network run recursively on the predicted target. Performance is measured
as NMSQE for T test time steps by computing

(
1/T

∑T
k=1 e(k)2

)
/var(d), where

e(k) = d̂(k)− d(k) is the error with respect to the target signal d(k) and var(d)
is the variance of the target.

3 The MSO-problem and the time step

For continuous signals with discrete sampling, it is often crucial to adjust the
network time-step ∆k to the sampling rate of the problem. Fig. 1 shows that for
the MSO problem time steps between 0.05 and 0.5 allow the network to succeed
in recursive prediction very easily. Thus in principle the MSO problem can be
solved straightforward and in a very simple manner within the standard ESN
framework and there is no need for advanced techniques. However, setting the
time step equal to one makes the problem harder and it remains interesting to
investigate whether the network could internally develop a dynamics providing
the necessary coding even under these circumstances.

4 The MSO-problem and the time history window

In the next experiment, we supply an increasingly long time history window
as input to the network, i.e. u1(k) = d(k), u2(k) = d(k − 1), . . . , uR(k) =
d(k−R +1). When recursively connecting after training, the predicted d(k +1)
is feed back to the first input ur and the rest of the history is shifted by one time
step. Thereby the network runs fully autonomous in recursive mode after R time
steps. In confirmation of the earlier results of Jaeger, for small history windows
R < 5 the networks almost always (> 95%) diverge in recursive mode and if they

491

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

0

0
1

5

2
3

10

4
% of spatio−temporal network firing

% of times firing for single neuron 3 % of times firing for single neuron 10

% of times firing for single neuron 14

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

10

neuron output
10

10

10

Figure 3: Output distribution of randomly selected single neurons after the IP
learning and spatio-temporal average of all neurons in the network histogramed
over one epoch of 4000 steps.

do not diverge, in most cases oscillate without implementing the MSO dynamics.
But for history length R larger than five the network sometimes diverges, but if
it does not, it is able to learn the MSO task. Fig. 2 shows mean NMSQE for up
to 1000 steps of recursive prediction for different length of the history window.
We conducted 50 runs for every history length and give the number of runs not
diverging within the prediction period together with the mean prediction.

5 The MSO-problem and intrinsic plasticity

Our third approach to solve the MSO problem is based on adapting the reser-
voir to the input signal to first optimize the temporal coding in the network
before computing the readout function. For adaptation we use a learning rule
developed in [4], which has been introduced to reservoir computing in [5]. It is
motivated from the capability of biological neurons to change their excitability
according to the stimulus distribution the neuron is exposed to. It has been ar-
gued that the underlying principle may be that exponential output distributions
maximize information transmission under the constraints imposed by maintain-
ing a constant mean firing rate. In [4], an online adaption rule to achieve this
goal of maximizing information transmission has been developed. It adjusts the
parameters a, b of the Fermi function in order to minimize the Kullback-Leibler
divergence of the actual output distribution of the neuron with respect to an ex-
ponential distribution with desired mean activity level µ. It adapts parameters
a, b for the neuron with learning rate ζ in time step k as ([4]):

∆b(k) = ζ

(
1−

(
2 +

1
µ

)
y(k) +

1
µ

y(k)2
)

, (3)

∆a(k) = ζ

(
1
a

+ x(k)−
(

2 +
1
µ

)
x(k)y(k) +

1
µ

x(k)y(k)2
)

. (4)

Fig. 3 illustrates the effect of IP learning by displaying a randomly chosen

492

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 100 200 300 400 500 600 700 800 900 1000

N
M

S
Q

E

recursive prediction timesteps

recursive MSO prediction, 300 nodes

150 epochs IP
200 epochs IP
250 epochs IP
300 epochs IP

#res #stable #MSO
50 16/50 10/50
100 41/50 10/50
150 50/50 44/50
200 50/50 43/50
250 50/50 42/50
300 50/50 46/50

Figure 4: Left: Recursive prediction errors computed every 20 steps after pre-
adapting 300 neuron reservoir networks with intrinsic plasticity. Means and
variances are given over 20 network initializations, no short term divergence oc-
curs. Right: Long term stability and convergence to the desired MSO attractor.
The table displays #res = number of nodes in the reservoir, #stable = number
of networks converging to an attractor, #MSO = number of networks converging
to the MSO attractor according to the measure given in the text.

neuron’s output distribution after application of the IP rule to a network of
200 neurons driven by the MSO signal. The network is iterated in epochs of
4300 steps while the IP learning rule is applied in each step with target average
activity µ = 0.2 and learning rate ζ = 0.001. We use identical inputs from
the MSO time series and zero initial states for each epoch. In epoch 500 we
record the network outputs y(k) after a relaxation phase of 300 steps, and plot
the histogram of activities of a randomly chosen neuron in Fig. 3 in 100 bins
of width 0.01. It is clearly visible that the neuron qualitatively approximates
an exponential output characteristic as well as the overall network output firing
pattern shown in Fig. 3, bottom. This activation pattern implies a sparse coding,
because most of the neuron have small output for most of the time. We now
persue the idea to pre-optimize the reservoir with IP adaptation and to apply a
standard echo state regression to the adapted reservoir.

Fig. 2 shows that application of IP pre-training can improve the performance
on an short time-scale of only 10000 training points (10 epochs of 1000 points).
However, still a considerable number of networks approximate the target network
not well enough and diverge in recursive mode. On the other hand this is not
surprising, because the statistical IP adaptation can exhibit its full power only on
a longer time scale. Fig. 4 shows the NMSQE for up to 1000 steps of recursive
prediction for different lengths of long term IP training. The effect of sparse
coding here is that the network even with a single input can reliably learn the
MSO task, the better, the longer we pre-train it with the IP rule. Further, there
occur no instabilities in recursive mode.

493

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

6 Long term stability

All our experiments confirm that the recursively connected networks tend to di-
verge when running for long times (we tested up to 107 steps). The reason seems
to be that initially the network trajectory stays close to the MSO oscillator, while
later slight drift inside the system tends to amplify. However, a combination of
intrinsic plasticity, time step 0.3, and the addition of noise in the frequency do-
main helps to solve this problem, i.e. we train with sin(r10.2k) + sin(r20.2k),
where r1,2 are uniformly drawn from ±10−7. Then, we pre-train with IP for
1.2 ∗ 106 steps and apply the regression. Every 8192 time steps we compute
the power spectrum of the discrete Fourier transform and compute the angle to
the spectrum of the MSO signal as similarity measure. We regard the network
as converged, if the variation in this measure is below a small threshold for 10
consecutive times (≈ 82000 steps) and consider the network as implementing
the MSO attractor if the angle is below 0.01rad in the high dimensional space
of the frequency spectra vectors. Fig.3 shows that with this training networks
converge and most of the time even to the desired attractor.

7 Conclusion

While measuring the encoding quality for a given input signal remains an open
and important problem, we believe that the MSO problem is not the best bench-
mark to show what is difficult for echo state regression. The three approaches
we showed to solve the MSO problem complement the more complex methods
to tackle this problem introduced earlier. We conclude that the MSO problem
is too simple to serve as hard benchmark. On the other hand, the present inves-
tigation shows that there exists a rich variety of modifications to the standard
ESN network approach, which can significantly change the performance. The
most instructive result from the present work is that intrinsic plasticity learning
is capable to change the reservoir dynamics based on a very general and unspe-
cific statistical unsupervised learning principle, which is used to optimize coding
in the reservoir in a signal specific way. It can also be used to stabilize the long
term dynamics to converge to the desired attractor.

References

[1] H. Jaeger. Adaptive nonlinear system identification with echo state networks. In
NIPS, pages 593–600, 2002.

[2] J. Schmidhuber D. Wierstra, F. Gomez. Modeling systems with internal state using
evolino. In Proc. GECCO, pages 1795–1802, 2005.

[3] Xue and S. Haykin. Decoupled ESNs with lateral inhibition. NIPS Workshop on
ESN, 2006. To appear in Neural Networks special issue on ESN and Liquid states.

[4] J. Triesch. A gradient rule for the plasticity of a neuron’s intrinsic excitability. In
Proc. ICANN, number 3695 in LNCS, pages 65–79, 2005.

[5] J. J. Steil. Online reservoir adaptation by intrinsic plasticity for backpropagation-
decorrelation and echo state learning. Neural Networks, 2007.

494

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

