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Abstract. Clustering techniques have been a valuable tool for several
data analysis applications. However, one of the main difficulties associated
with clustering is the validation of the results obtained. Both clustering
algorithms and validation criteria present an inductive bias, which can
favor datasets with particular characteristics. Besides, different runs of the
same algorithm using the same data set may produce different clusters.

In this work, traditional clustering and validation techniques are combined
with a Genetic Algorithm (GA) to build clusters that better approximate
the real distribution of the dataset. The GA employs a fitness function
that combines two validation criteria. Such combination allows the GA
to improve the evaluation of the candidate solutions. Furthermore, this
combined approach avoids the individual weaknesses of each criterion. A
set of experiments are run to compare the proposed model with other
clustering algorithms, with promising results.

1 Introduction

Clustering is based on an inductive principle where patterns within a cluster are
more similar to each other then patterns belonging to different clusters. This
inductive principle is known as the objective function of the clustering technique
and its association with a dataset creates an optimization problem [1]. Several
clustering algorithms have been proposed in the literature and applied to a wide
range of problems. To evaluate the performance of an algorithm, and allow its
comparison with other algorithms, it is essential to adopt a validation criterion.

In this paper, we propose a GA that combines two known clustering valida-
tion criteria, silhouette [2] and VRC [3], to evaluate the population of solutions
evolved by a GA. This combination enables the GA to evaluate a larger portion
of the search space of possible clusters, improving the evaluation of solutions
and increasing the chances of finding a suitable partition.

The elements in each cluster of the initial population of the GA are randomly
defined. After the evolutionary process, k-means is applied to fine tune the indi-
viduals in the final population. Experimental results suggest that the proposed
approach can produce clusters closer to the known structure of the dataset than
those produced by other investigated approaches.
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This paper is organized as follows. Sections 2 and 3 describe the validation
criteria employed in this work, silhouette and variance ratio criterion, respec-
tively. The proposed approach is presented in Section 4. The experiments carried
out and their results are covered in Section 5. Section 6 concludes the paper.

2 Silhouette

The silhouette criterion, or measure, is based on the distance or dissimilarity be-
tween patterns belonging to the same cluster and the distance between patterns
from one cluster and their closest pattern belonging to a different cluster [2]. As
an example, consider a pattern i belonging to cluster A. The average distance
between i and all other objects of A is denoted by a(i). Let C be another clus-
ter. The average distance between i and all objects of cluster C is denoted by
d(i, C). After computing d(i, C) for all clusters C 6= A, the smallest value, b(i),
is selected, where b(i) = min d(i, C)∀C 6= A. Thus, the silhouette value for a
pattern i is given by:

s(x) =

 1− a(x)/b(x), a(x) < b(x)
0, a(x) = b(x)
b(x)/a(x)− 1, a(x) > b(x)

(1)

It is easy to observe that −1 ≤ s(i) ≤ 1. This measure works better with
hiperspherical, compact and disjoint clusters [2]. Since this measure favors clus-
ters with highest similarity between patterns, it is biased against cases where
the known clusters are potentially overlapped [2]. When this measure is used in
as objective function, these overlapped clusters are usually combined, especially
if the number of the produced clusters is smaller then the known number.

3 Variance Ratio Criterion (VRC)

The other criterion employed, VRC, is based on internal cluster cohesion and
external cluster isolation [3]. It has been frequently used when clustering is
combined with GAs [4, 5, 6]. The internal cohesion is calculated by the within-
group sum of square distances (WGSS) and the external isolation by the between-
groups sum of square distances (BGSS) [7]. The VRC value is given by:

V RC =
BGSS

(k − 1)
/
WGSS

(n− k)
(2)

where k is the number of clusters and n the number of patterns. The results
produced by the VRC criterion do not depend of the cluster algorithm used and
can be employed to estimate the dataset natural number of clusters [8].

4 Proposed Approach

Three key aspects related to the use of GAs are solution representation, fitness
function and genetic operators. In this work, the representation of each indi-
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vidual is divided into two parts. The first part is composed by a vector of n
real variables, genes, where n is the number of patterns in the dataset. Thus,
each gene represents one pattern and its value indicates the cluster it belongs to.
The second part stores the total number of clusters k, the distance measure to
be used by k-means and the centroids (ct1, ct2, ..., ctk) defined by k-means. For
example, if a group of patterns X = {A − F} is partitioned into three clusters,
C1 = {A,C}, C2 = {B,D,E} and C3 = {F}, this partition is represented by
the chromosome in Fig. (1).

Part 1 Part 2
A B C D E F k distance measure centroids
0 1 0 1 1 2 3 euclidean ct1|ct2|ct3

Fig. 1: Chromosome representing groups C1, C2 and C3.

4.1 Fitness Function

Most of the clustering approaches using GAs have a fitness function based on
a single criterion. Experiments performed by the authors showed that the use
silhouette as fitness function resulted in clusters closer to the real structure of
the data than the use of minimum squared error (MSE) or VRC, especially
when this structure was disjoint. However, when the true structure has clusters
with arbitrary shapes, silhouette may result in the agglomeration of overlapping
clusters. Further analysis of these clusters revealed that VRC presented low
scores when true clusters are agglomerated.

Therefore, we propose a fitness function that uses VRC to detect and avoid
agglomeration caused by the use of silhouette. This function penalizes individ-
uals i for which V RC(i) − V RC < −dv is true, where V RC(i) is the VRC of
individual i, V RC the average of the VRC values associated to all individu-
als in the population and dv its standard deviation. The fitness value of these
individuals is given by Equation 3.

Fitness(i) =

n∑
j=1

s′(j)/n

(V RC − V RC(i))/dv
(3)

where n is the number of individuals in the population and s′(j) is the mean
silhouette value for all patterns represented by individual j. Otherwise, the fit-
ness is given by the silhouette value. A performance comparison of the proposed
fitness function with silhouette and VRC is presented in [9].

4.2 Genetic Operators

In the proposed algorithm, KMGA, we propose a centroid-based modified crossover
operator, where the centroids of two individuals are randomly distributed be-
tween two offspring with probability pc. The mutation operator employed changes
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each pattern from one cluster to another with probability pm. The values of pc

and pm are empirically defined (0.9 and 0.05, respectivelly). An elitism operator
selects copies of the fittest individuals to the next generation. The fittest indi-
viduals are selected by tournament selection [10]. The stop criterion is simple:
if there is no improvement in the best individual in N generations, the algorithm
stops and returns the partition with the highest fitness value.

It is important to stress a difference between the approach reported here and
other approaches presented in the literature. In the proposed approach, a clone
is made of each chromosome in the final population and k-means is applied to
fine tune the clusters represented by these clones, using the distance measure
stored in its second part. In the experiments carried out for this paper, the
Euclidean, Pearson and Manhattan distances were investigated. Afterwards, if
the clone has a fitness value higher than the original chromosome, it substitutes
the original chromosome.

5 Experimental Results

Five datasets were used in the experiments, two artificial datasets (Gaussian3
and Simulated6) [11] and three datasets from Bioinformatics (Lung, Leukemia
and Protein) [11, 12]. Table 1 describes the main characteristics of these datasets
1. It presents, for each dataset, the number of instances (]Inst.), the number of
classes (]Cl.), the number of attributes (]Attrib. ) and the mean, minimum and
maximum number of examples per class (mea./min./max. ex./class).

Data ]Inst. ]Cl. ]Attrib. mea./min./max. Main Characteristics
ex./class

Gaussian3 60 3 600 20/20/20 3 disjoint clusters.
Simulated6 60 6 600 10/5/15 50 attributes for each class.
Lung 197 4 1000 49.3/17/139 Heterogeneous clusters.
Leukemia 248 6 985 41.3/15/79 6 leukemia subtypes.
Protein 698 4 125 178/96/260 Expression count.

Table 1: Datasets description

KMGA is compared with other GA-based clustering algorithms, GAG [13],
COWCLUS [4] and the algorithm proposed by Murthy [14], and three tradi-
tional clustering algorithms, k-means [1], single-link and complete-link [1]. Each
experiment was run 30 times for each algorithm and the results shown in Figure
2 are the average of these 30 runs. The clusters obtained by each approach
were validated with the external criterion Corrected Rand (CR) [15]. This val-
idation criterion compares the clusters obtained by a particular technique with
the dataset previous known structure. CR results values are between [0.0...1.0],
where 1.0 indicates that the partition found is identical to the known structure.

Figure 2 shows that KMGA obtained CR values higher than other algorithms
in the majority of the datasets. It was the only algorithm that obtained the real
clusters of the Gaussian3 dataset on every run and found the closest partition to
the real structure of Simulated6, with CR 0.9585. Single-link resulted in good
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Fig. 2: Average CR value and runing time for each algorithm in each dataset

partitions for the artificial datasets, but it was the only algorithm unable to find
the true structure for the Gaussian3 and had the worst performance on the gene
expression datasets. KMGA also obtained most of the highest CR scores on the
Leukemia and Protein datasets and the second best performance on the Lung
dataset. Complete-link showed a high CR on this dataset, but presented poor
CR values for the others.

Although KMGA also presented running time closer to the other GA clus-
tering techniques and k-means, hierarchical single-link and complete-link were
faster. Since hierarchical techniques are deterministic, they were run only once
as their final partitions are the same for each dataset.

The use of VRC in the fitness function avoided the agglomeration of known
clusters, which occurred with the silhouette based fitness. Some examples were
the penalization of the partitions with five clusters in the Simulated6 dataset,
whose average CR raised from 0.3117 to 0.7532, and partitions with four clusters
in the Leukemia dataset, whose CR raised from 0.4428 to 0.7814.
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6 Conclusion

This article presented the KMGA algorithm, which uses VRC to detect and avoid
partitions agglomerated by the silhouette criterion. Experimental results show
that KMGA can produce partitions close to the known structure of the datasets
employed. Different from the other algorithms investigated in this paper, KMGA
obtained a good performance in all datasets evaluated. KMGA running time was
close to the running time of other clustering algorithms based on GAs found in
the literature and of the traditional k-means algorithm.
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