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Abstract. In this work we introduce a new model for representing EEG
signals and extracting discriminative features. We treat the outputs of
each electrode as a stochastic process and assume that the sequence of
variables forming a process is stationary and Markov. To capture tem-
poral dependences within an electrode, we use conditional entropy and to
capture dependences between different electrodes we use conditional mu-
tual information features of increasing complexities. We show that even
when using a small number of sampling points for their estimation (e.g.
a single trial) these features carry discriminative information. We test
the usefulness of these features by classifying the EEG data from n-back
memory tasks.

1 Introduction

Extracting informative and discriminative features from EEG signals is often
of crucial importance for representing and classifying patterns of brain activa-
tions. Among the common techniques for analyzing EEG data and extracting
features are power spectrum analysis [1], auto-regression (AR) analysis [2], and
independent component analysis (ICA) [3]. Information theoretic methods, such
as entropy (H) and mutual information (MI) have also been used to assess EEG
signals and to discriminate between Alzheimer’s and normal patients [4, 5]. Sim-
ilarly, entropy has been used to characterize cognitive states and it has been
shown that the entropy during the resting state is higher compared to the en-
tropy during various cognitive tasks (e.g. the mental arithmetic task [6]).

In our previous work [7] we demonstrated that entropy and MI can be used
to extract localized features and that MI can capture both linear and non-linear
dependences between pairs of electrodes. We showed that those features out-
perform both power spectrum and linear correlation features when applied to
classifying n-back EEG data. The main shortcoming of H and MI features is that
they provide a very coarse representation of electrode outputs. For example, if
we want to capture the “spatial” dependences among electrodes (i.e. between
electrodes from different spatial locations) we can do it by representing electrode
outputs as independent and identically distributed (i.i.d.) random variables, as
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in [7], and then calculate the MI. However, if we want to capture temporal de-
pendences, either among different electrodes or within the same electrode, we
have to use a finer representation of electrode outputs.

The main objective of this paper is to propose one such solution and model
outputs of each electrode as a stochastic process. Using a sequence of random
variables clearly provides a much more accurate representation compared to the
one that uses i.i.d. random variables to capture the outputs. However, this
comes with a high computational price. For example, using our data, if we want
to model a sequence that is only one trial long (around 1,125 sampling points),
we would need over one thousand random variables. Obviously, such a sequence
would not be of much use for practical purposes since estimation of entropy and
mutual information would require prohibitive amounts of data. For that reason,
in this work we assume that the stochastic process (representing the output of an
electrode) is stationary and Markov. To capture temporal dependences within an
electrode we use conditional entropy feature and to capture dependences between
pairs of electrodes we construct mutual information-based features. We test the
usefulness of these features by classifying the EEG data from n-back tasks and
demonstrate their advantage over simple entropy and MI features that do not
incorporate temporal information.

2 Spatio-temporal features

In this section we introduce features that we use to capture dependences within
and between electrodes whose outputs are represented with stochastic processes.
We define a stochastic process {Xt}T

t=1 as an indexed sequence of random vari-
ables [8]. The process, for a given electrode, is characterized by the joint prob-
ability mass functions P{(X1, X2, ..., XT) = (x1, x2, ..., xT)} = p(x1, x2, ..., xT).

Suppose that we represent the outputs of one electrode with the sequence
(X1, X2, ..., XT ) and the outputs of another electrode with (Y 1, Y 2, ..., Y T ). We
can then calculate the dependence between these two electrodes by calculating
the MI for the two sequences. Using the chain rule for MI [8] it is straightforward
to calculate the MI between series (X1, X2, ..., XT) and (Y 1, Y 2, ..., Y T )

I(X1, X2, ..., XT ; Y 1, Y 2, ..., Y T ) =
T∑

j=1

I(Xj ; Y 1, Y 2, ..., Y T |Xj−1, .., X1) =

T∑

i,j=1

I(Xj ; Y i|Xj−1, ..., X1, Y i−1, ..., Y 1) =
T∑

i=1

I(Xi; Y i|Xi−1, Y i−1, ..., X1, Y 1)

+
T−1∑

i=1

I(Xi ; Y i+1|Xi−1, Y i, ..., X1, Y 1) +
T∑

i=2

I(Xi; Y i−1|Xi−1, Y i−2, ..., X1, Y 1)

+ ... + I(X1; Y T |Y T−1, ..., Y 1) + I(XT ; Y 1|XT−1, ..., X1) =
≡ I(τ = 0) + I(τ = −1) + I(τ = 1) + ... + I(τ = −(T − 1)) + I(τ = T − 1).

where τ is the time delay. In this work, we consider only the time delay τ = 0.
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In order to simplify the previous expressions, we will assume that the se-
quence of random variables is Markov

P{Xt+1 = xt+1|Xt = xt, ..., X1 = x1} = P{Xt+1 = xt+1|Xt = xt},

time invariant

P{Xt+1 = b|Xt = a} = P{X+ = b|X = a},

(for all t, and all a, b), and stationary [8]. As a consequence of these assump-
tions, each term in the summation of I(τ = 0) is equal and the average MI for
a pair of variables is

Ī(τ = 0) =
1
T

T∑

i=2

I(Xi; Y i|Xi−1, Y i−1) ≡ I(X+ ; Y +|X, Y ) (1)

= H(X+ , X, Y ) + H(Y +, X, Y ) − H(X, Y ) − H(X+ , Y +, X, Y ).

If we assume that X+ and Y + are independent of Y given X then the previous
expression reduces to

I(X+ ; Y +|X) = H(X+|X) − H(X+|X, Y +) (2)

= H(X+, X) + H(X, Y +) − H(X+, Y +, X) − H(X).

where I(X+; Y +|X), in general, is not symmetric (I(X+ ; Y +|X) 6= I(X+ ; Y +|Y ))
for any specific pair of electrodes. However both I(X+ ; Y +|X) and I(X+ ; Y +|Y )
produce the same feature set once we go through all the electrodes.

Finally, assuming that the outputs are i.i.d. random variables, the mutual
information of two times series reduces to

I(X; Y ) = H(X) + H(Y ) − H(X, Y ). (3)

The entropy of a single random variable X, and joint entropy of (X, Y ) is

H(X) = −
∑

xi

p(xi) log p(xi), H(X, Y ) = −
∑

xi,xj

p(xi, xj) log p(xi, xj).

With the lower index we label different values of a random variable and with
the upper index we label random variables. Generalization to more than two
variables is straightforward.

Note that for X = Y Eq. (1) and Eq. (2) reduce to the conditional entropy
(CH) of X+ given X: I(X+ ; X+|X, X) = I(X+ ; X+|X) = H(X+|X), where

H(X+|X) = −
∑

i,j

p(x+
i , xj) log

p(x+
i , xj)

p(xj)
.

To estimate entropy, E(H), we use a Bayesian approach with a Dirichlet prior,
as described in [7].
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2.1 Data Acquisition

Six subjects (ages 20-24, 5 females and 1 male), performed an n-back memory
task while the EEG was recorded, as described in [7]. The n-back task requires
subjects to decide whether a currently present stimulus matches one presented
n trials previously. We used 4 different tasks reflecting 4 different memory loads
(n = 0, 1, 2 and 3).

Electrical activity (EEG) was recorded with 62 electrodes using 10-20 In-
ternational System. The EEG was amplified by battery-operated amplifiers
(EMS, Inc.) with a gain of 46K through a bandpass of 0.01-100Hz. Electrode
impedances were kept below 5kΩ when possible. EEG was continuously acquired
at a sampling rate of 512Hz and stored on a disk for offline analysis.

One session of EEG data recorded from one subject during one task includes
102 trials. The first 6 and the last 6 trials were ignored and therefore we use 90
trials per task. The length of each trial is about 2.2 seconds which means that
for each electrode there are around 1,125 sampling points per trial.

3 Results

In this section we present the effectiveness of different features for the classifi-
cation of EEG signals. The objective was to associate a segment of the EEG
signal with both the subject and the memory task. Since we use six subjects
and four tasks there are all together 24 classes, ci, i = 1, 24.

The raw data is processed using the surface Laplacian [9] and filtered into
three bands: A (1-20Hz), B (1-50Hz), and C (1-80Hz). Within each band we
then extracted the following features: Conditional Entropy (CH), and Mutual
Information features, MI(m), where m is the number of random variables used
to calculate them. MI(3)= I(X+ ; Y +|X) features combine information from 3
variables as defined in Eq. (2), and MI(4)= I(X+ ; Y +|X, Y ) features capture
information from four variables Eq. (1). Note that MI features are always com-
puted between different electrodes so there are 3,782 MI(3) features, and 1,891
MI(2) and MI(4) features. In addition, and for comparison purposes, we also
extracted the power spectrum (PS), and entropy (H) features and the number
of these features is 62.

Classification. Since the goal of this work is to contrast the effectiveness of
different feature extraction methods, we use a classifier that is easy to implement
and fast to train - a Naive Bayes (NB) classifier. The classifier uses Bayes rule to
calculate the probability that a given EEG segment, represented with features
(f1, ..., fF ), belongs to specific class ck,

p(ck|(f1, ..., fF )) =
∏F

i p(fi|ck)p(ck)
p(f1, ..., fF)

. (4)

As a consequence of the assumption that the value of each feature is independent
of the value of any other feature given the class, the NB classifier can easily deal
with high-dimensional feature vectors and can be trained with relatively small
number of training examples.
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We model the likelihoods using univariate Gaussian distributions N (µi, σi)
and calculate the mean µi and the variance σi using maximum likelihood esti-
mates. The parameters associated with each class are estimated using data from
one task and one subject. The prior term, p(ck), is the same for all classes.

To evaluate a classifier we use a leave-one-out method. In this work, we
present results using segments that are one (five) trials long.

Features: MI(2) MI(3) MI(4) MI(3)+CH MI(4)+CH
Band A: 56.1% 70.9% 79.0% 70.7% 79.2%
Band B: 75.3% 86.5% 90.1% 87.1% 90.3%
Band C: 77.6% 89.3% 92.6% 89.3% 92.8%

Table 1: Classification rates from single trials.

In the first set of experiments, we compare the mutual information features
of increasing complexity using single trial segments, Table 1. The MI(2) fea-
tures capture only “spatial” information (dependences between electrodes from
different spatial locations) whereas the MI(3) features, in addition, incorporate
temporal information from one electrode. The MI(4) features are the most com-
plex and include temporal information. It is important to note that the num-
ber of samples needed for accurate estimation of MI(4) features is significantly
larger compared to other features, e.g. over two orders of magnitude compared to
MI(2) features. It is remarkable that despite this fact, classification consistently
improves with the increased complexity of the features. Adding temporal infor-
mation from the electrodes in isolation (CH), as shown in the last two columns,
does not significantly change the performance. This is to be expected since tem-
poral information captured by CH features is implicitly contained in MI(3) and
MI(4) features. Therefore, although MI(4) features capture more information
compared to CH, they also capture more noise.

In order to evaluate the importance of the size of the EEG segment on per-
formance, we repeated the previous experiments but now using five trials long
segments, Table 2. The classification rates are significantly higher for all the
features and bands, since a higher number of samples improves MI estimation.

In Table 3 we contrast PS, H, and CH features using single trial EEG seg-
ments (first three columns) and 5 trials long segments (last three columns).
As one can see, the CH features outperform all other features, even the MI(4)
features that capture much more information. However, one cannot draw the
conclusion that CH features are more discriminative than MI(4) features because

Features: MI(2) MI(3) MI(4) MI(3)+CH MI(4)+CH
Band A: 80.8% 85.4% 88.6% 86.4% 88.5%
Band B: 86.1% 94.4% 95.5% 93.9% 95.5%
Band C: 88.2% 95.8% 96.5% 95.3% 96.5%

Table 2: Classification rates using five trials long segments.
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the dimensionality of the feature space is much larger for MI(4) features than
for CH features (1,891 compared to 62) and the limited number of samples, for
a given EEG segment, impacts MI(4) features more adversely than CH features.

Features: PS H CH PS H CH
Band A: 64.5% 71.9% 87.3% 75.1% 85.9% 95.5%
Band B: 85.7% 87.0% 94.9% 91.5% 92.4% 97.9%
Band C: 89.2% 89.0% 95.7% 94.4% 93.3% 98.1%

Table 3: Classification rates using 1 (columns 1-3) and 5 trials (columns 3-6).

4 Conclusions

In this work, we represented the output of each electrode as a stationary and
Markov stochastic process, and used conditional entropy and conditional MI
to capture dependences within and between electrodes. We showed that the
performance of the classifier always increases with the complexity of the features
and with the size of the training/testing segment. Furthermore, we showed that
the most complex features (MI(4)) provide significant discriminative information
even when estimated from a single trial.
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