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Abstract. In the paper, the problem of multi-objective (MOBJ) learning
is discussed. The problem of obtaining apparent (effective) complexity
measure, which is one of the objectives, is considered. For the specific case
of RBFN, the bounds on the smoothness-based complexity measure are
proposed. As shown in the experimental part, the bounds can be used for
Pareto set approximation.

1 Introduction

Similarly to other universal approximators, neural networks are capable to yield
good generalization by minimizing a fitting criterion when the amount of ob-
servations is sufficiently large. However, non-synthetic data is most likely to
be finite and disturbed by noise, leading single objective error minimization
learning approaches often to poor generalization and overfitting. This kind of
behaviour led to the development of generalization control methods, which aim
at obtaining a proper balance between bias and variance, by also minimizing
network complexity [1]. Pruning [2] and regularization [3] methods are com-
monly used to achieve that goal. While pruning algorithms control complexity
by manipulating network structure, regularization aims at controlling network
output response with penalty functions. However, error and network complexity
(structural or apparent) in these two approaches are treated as single objec-
tive problems. Although this may result on good generalization models, they
are highly dependent on user defined training parameters. In addition to that,
it is well known that error and complexity are conflicting objectives and, simi-
larly to bias and variance, demand balancing instead of joint minimization. This
viewpoint of learning demands multi-objective (MOBJ) methods [4], which treat
empirical and structural risks as two independent objectives.

The MOBJ problem can be defined by introducing error and complexity
objective functions φe(ω) and φc(ω), repectively. With the first one representing
the empirical risk and the second one representing the structural risk, we may
now formulate MOBJ learning as the vector optimization problem

min
ω∈Ω

(φe(ω), φc(ω)), (1)

where ω is the vector of network parameters in the parameter space Ω.
Since the objectives are conflicting in the region of interest, the solution of (1)

is a Pareto-optimal front Ω∗ ⊆ Ω, in which the elements ω∗ ∈ Ω∗ satisfy the con-
ditions ∀ω : {φe(ω) ≥ φe(ω∗), φc(ω) ≥ φc(ω∗)}. In other words, the optimization
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problem results in the optimal solutions that represent the best compromise be-
tween the two objectives. It means that for every solution ω �∈ Ω∗, there are
others in Ω∗ that have lower complexity and error.

Usually, the squared error criterion and the norm of network weights ‖w‖ are
taken as the error and complexity measures for MLP networks [5]. A general
definition for assessing apparent complexity of other network types is not known,
what is an obstacle for MOBJ learning. In this paper we present the smoothness-
based apparent complexity measure and propose its bounds for RBF network.
We show that the apparent complexity is limited by σ−1‖w‖1, where σ is the
radius of the hidden layer functions and ‖ · ‖1 is the Manhattan norm operator
(1−norm). It is shown also that this result can be used to control generalization
of RBF with MOBJ learning.

2 Apparent complexity measure for RBFN

Considering neural network as the function f in Sobolev spaces W
k,p, its smooth-

ness could be represented in terms of the Sobolev [6] norm

‖f‖k,p =
k∑

i=0

‖f (i)‖p =
k∑

i=0

(∫
|f (i)(t)|p dt

)1/p

. (2)

Since only the second or higher order elements of sum (2) represent nonlinear
properties, the element ‖f (2)‖2 can be chosen for nonlinear smoothness criterion,
which is also considered as a penalty function in regularization [3, 7]. The
apparent complexity measure based on ‖f‖2,2 may be therefore expressed as

φc(ω) =
∫ ∥∥∥f ′′

(x, ω)
∥∥∥ ∂x =

∫
‖�xf‖ ∂x, (3)

where f(x, ω) is the mapping function of the neural network with parameters ω.
Let’s consider the particular case of n-input single output RBF network

containing m Gaussian functions of the same radius σ and prototype matrix
c = (c1, c2, . . . , cm). Introducing the centered input vector δj = x−cj

σ with re-
spect to j-th prototype and the centered kernel function K(δ) = exp(−1

2δ2), the
network output can be written as

f(x,w, σ, c) =
m∑

j=1

wjK(δj), (4)

where w is the (m × 1) output weights vector.
Hence, the radial basis functions with spherical receptive fields is considered,

the Hessian of (4) is diagonal and its Euclidean norm in (3) is

‖�xf‖ =

⎛
⎜⎝ n∑

i=1

⎛
⎝ m∑

j=1

σ−2wjK (δj)
(
δ2
j − 1

)⎞⎠
2
⎞
⎟⎠

1
2

.
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According to the triangle property of the norm operator, we obtain the following
inequality:

‖�xf‖ ≤
m∑

j=1

(
n∑

i=1

(
σ−2wjK (δj)

(
δ2
j − 1

))2) 1
2

or

‖�xf‖ ≤ σ−2
m∑

j=1

|wj |K (δj)
(
‖δj‖4

4 − 2 ‖δj‖2 + n
) 1

2
(5)

after simplification. One can see, that there are positive functions on both sides
of (5). Thus, the inequality remains the same after integration, providing

φc(w, σ, c) ≤ σ−2
m∑

j=1

|wj |
∫

K (δj)
(
‖δj‖4

4 − 2 ‖δj‖2 + n
) 1

2
∂x.

Introducing Ψ(δj) = K (δj)
(
‖δj‖4

4 − 2 ‖δj‖2 + n
) 1

2
and passing to the integral

by ∂δi = σ−1∂x, we obtain

φc(w, σ, c) ≤ σ−1
m∑

j=1

|wj |
∫

Ψ(δj)∂δj .

Since Ψ(δj) does not depend on the network parameters, we may treat
∫

Ψ(δj)∂δj

just as function of n and take it out from the sum. Accordingly, we obtain the
bound on apparent complexity

φc(w, σ, c) ≤ σ−1‖w‖1Θ(n), (6)

where Θ(n) =
∫

Ψ(δ)∂δ and ‖ · ‖1 is the Manhattan norm operator (1−norm).

3 MOBJ learning

Usually, the vector optimization problem (1) does not have an analytical solution,
however in practice it is enough to approximate the Pareto front Ω∗ with a finite
number of solutions. According to MOBJ learning concepts, after approximation
is obtained, the resulting “best” solution must be selected from Ω∗ on a decision
making step, in accordance to a posteriori criterion, such as validation error,
maximum entropy etc.

When nothing is known about convexity of the Pareto front, the ε-constraint
method can be used to achieve the approximation of Ω∗. The apparent com-
plexity bound (6) is obtained, regardless of the prototype location. Here, we
consider the case when prototypes are once determined by an appropriate strat-
egy and does not participate in parameter search. Thus, inequality (6) leads to
the ε-restrict approximation{

[w∗
i , σ∗

i ] = arg minφe(w, σ, c),

σ−1‖w‖1 ≤ εi.
(7)
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In view of that, the constraints imposed on φc(ω) bounds are more important
than its magnitude, Θ(n) is neglected under assumption on its convergence.

4 Experiments

The experiment was concerned on the regression problem of sinc function

y(x) =
sin(πx)

πx
+ γ, (8)

where γ is the normally distributed zero mean and constant variance noise com-
ponent. Since the problem is simple by itself, we treat it under conditions of
high noise level and small number of observations in order to force the difficulty
of obtaining good generalization.

We choose m = 30 radial basis functions and noise variance of σ2
noise = 0.22.

The training and validation sets were generated respectively by selecting 100
and 50 samples of (8) on the interval x ∈ (0, 4π] normalized to [0, 1]. The test
sample of (8) was taken without noise. Since the problem is one-dimensional,
the prototype centers were equidistantly spaced on the input range.

The Pareto front was approximated for complexity bound restriction mag-
nitudes εi ∈ [0, 80]. The candidate solution for the corresponding εi was se-
lected with respect to a minimal training error value calculated for the radius
σ ∈ [0.1, 0.5]. According to (7), the w corresponding to a solution under chosen
restrictions must satisfy ‖w‖1 ≤ σεc. Therefore, for given εi and σ the out-
put layer weight vector w was obtained by solving the constrained least squares
problem ⎧⎨

⎩E =
1
2
(Y − Hw)2,

‖w‖1 ≤ σεi,
(9)

over the training set of N samples (x(k)|yd(k)) using ellipsoid method. Here
H is the (N × n) matrix of radial basis function values hkj = K(δj(x(k))) and
Y = (yd(1), yd(2), . . . , yd(N))T stands for the desired output vector.

The final solution, minimum of validation error, is picked-up within the
obtained candidates set. The results of the Pareto front approximation are
shown on Figure 2, where each auxiliary curve is also a Pareto front of the sub-
problem (9). The regression results are presented in Figure 1 and Table 1. Also,
the comparison with the ridge regression (RR) method for various model selec-
tion criteria is given: Bayesian information criterion (BIC), generalized cross-
validation (GCV) and maximum margin likelihood (MML).

5 Conclusions

The experimental results confirmed the efficiency of generalization control based
on the proposed bounds. The solutions obtained by application of RR learning
is close to the MOBJ results. In contrast to the RR results, most of the weights
have exactly zero magnitude (see Figure 1 (b)), so the network structure can be
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Fig. 1: The regression results for MOBJ solution (a) and the weight magnitudes
(b) in a comparison with RR results.

Solution σ ‖w‖1 σ−1‖w‖1 MSE (train/valid./test)
RR (GCV) 0.22 3.84 17.6 0.0405 / 0.0343 / 0.0048
RR (BIC) 0.22 3.97 17.6 0.0407 / 0.0349 / 0.0054

RR (MML) 0.16 1.95 11.9 0.0406 / 0.0329 / 0.0044
MOBJ 0.14 1.41 9.7 0.0403 / 0.0339 / 0.0042

Table 1: The experimental results.
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Fig. 2: The results of Pareto front approximation and the candidate set.

simplified without any loss. Hence, we can conclude that the proposed MOBJ
approach involves both the pruning and regularization properties.

From the experimental results, it was observed that, under certain conditions,
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the Pareto front presents non-convex intervals. Moreover, the best solution may
belong to them.

It is noteworthy, that learning with regularization in a general nonlinear form
is equivalent to solving the multi-objective problem (1) by weighting method,
that is the minimization of the convex combination of the objectives minφe(ω)+
λφc(ω), where λ ≥ 0 is the regularization parameter. For various values of λ
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Fig. 3: The example of regularization in case of non-convex Pareto front.

the solutions will always form a convex front, which will concur with the Pareto
front only on its convex intervals as it is shown on example Figure 3. Hence,
we infer that regularization learning based on smoothness penalty (3) does not
reach the best possible solutions from the non-convex Pareto front regions, so
MOBJ learning is needed in such situations.

The proposed bounds on apparent complexity (6) for RBFs provide a new
possibility for MOBJ learning. The concept can also evolve to more general RBF
networks and other architectures, what brings also interest for further research.
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