
Algebraic Inversion of an Artificial Neural

Network Classifier

Travis Wiens, Rich Burton and Greg Schoenau ∗

University of Saskatchewan - Department of Mechanical Engineering

Saskatoon, Sk, Canada

Abstract. Artificial neural networks are, by their definition, non-linear

functions. Typically, this means that it is impossible to find a closed-form

solution for the inverse function of a neural network. This paper presents

a special form of neural network classifier that allows for its algebraic

inversion in order to find the boundary between classes. The control of

the fuel-air ratio in a spark ignition engine is given as an example.

1 Introduction

An artificial neural network (hereafter referred to as simply a neural network)
is a complex system, made of simple identical non-linear parallel elements [1].
Typically, this complexity and non-linearity do not permit one to find an al-
gebraic solution for the inverse of a neural network; that is, to solve for what
inputs will result in a particular output. This paper presents a form of neural
classifier which permits one to solve this problem in order to find a closed-form
solution for the boundary, under certain conditions. This is achieved by using
a generalized neural network [2] with certain weights strategically set to zero.
An example is used to illustrate the technique: the control of fuel-air ratio in a
spark ignition (SI) engine.

2 Problem Definition

Static neural networks are often used as non-linear function approximators or
classifiers. For example, in the control of a spark ignition engine, one may wish
to classify whether the fuel-air ratio injected into the engine will be rich (too
much fuel for complete combustion) or lean (too little fuel), given operating
conditions of intake manifold pressure, Pm, engine speed, Ne, and the control
action of fuel injector pulse width, ti. In this case, a neural network model of
the “plant”, Gp, would be set up as

ŷ = Gp(Pm, Ne, ti) (1)

where ŷ is an estimate of a two-state oxygen sensor output, with 0 signifying a
lean air-fuel ratio and 1 rich. One would then take a sample of data and train the

∗The authors would like to acknowledge the support of NSERC, in the form of a PGS D
Scholarship; the Saskatchewan Research Council for providing equipment and expertise; and
General Motors Alternative Fuels for the loan of the test vehicle. Thanks are also given to
Natural Resources Canada and Precarn Inc who funded initial work in this area.

391

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

network weights in Gp so that the error between the estimated sensor output, ŷ
and the measured sensor output, y is minimized.

Stoichiometric fuel-air control is based on maintaining the fuel-air ratio near
the stoichiometric point, where there is just enough fuel for complete combus-
tion, at the boundary between rich and lean. Thus, given operating points Pm

and Ne, the controller must find the value for ti on the “decision boundary”.
This injection pulse width is called the stoichiometric pulse width, tis, and the
controller’s estimate of it is t̂is. The control function, Gc, is then the inverse of
the plant function:

t̂is = Gc(Pm, Ne) = G−1

p (2)

or the solution of the equation

Gp(Pm, Ne, t̂is) = 0.5 (3)

for tis. This corresponds to the transition point between rich (Gp = 1) and lean
(Gp = 0) operation.

There are a number of methods of inverting a nonlinear function, but typi-
cally they involve iterative numerical solutions, which are not suitable for real-
time control. For example, for an 8-cylinder engine running at 6000 RPM, this
calculation must be completed at a minimum of every 2.5 ms on processors with
low computational power. The ideal solution would be to be able to algebraically
invert the network.

3 Proposed Solution

The proposed solution to the problem outlined above involves the use of a special
kind of neural network, known as a generalized neural network, or GNN [2].
Unlike the familiar multilayer perceptron (MLP), which has discrete layers, each
of which is only connected to the previous layer, the neurons of a GNN are
organized in a line, with each neuron connected to all the neurons to the left
of it, as shown in Figure 1. Thus, for a network with four inputs (three inputs
plus a 1 for bias), the first hidden neuron, x5, would have four inputs; the next
neuron, x6, would have these four inputs plus the output of x5, and so on, such
that the output neuron, xN , in an N -neuron network, would have N − 1 inputs.
Each neuron in the network is a typical artificial neuron: a non-linear sigmoidal
function applied to the weighted sum of the inputs. In this case, a (1 − e−x)−1

sigmoid was used to scale the outputs to a range of 0 to 1, but any sigmoid may
be used.

For the example given above, the equation for the network output is

ŷ = sig(W1x1 + W2x2 + W3x3 + W4x4 . . .

+W5x5 + . . . + WN−1xN−1) (4)

where Wn is the weight on the nth input xn, in a network with N neurons, and
sig(x) = (1− e−x)−1. If one sets up the network as shown in Figure 1, x1 = Pm,
x2 = Ne, x3 = ti, (all scaled to the range (0,1)), x4 = 1 (for a bias) and the

392

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

Pm Ne ti 1

x5 x6 x7

ŷ

Fig. 1: A Generalized Neural Network (GNN) is a string of neurons, shown here
with inputs on the left and outputs on the right. Each neuron is connected to
every neuron to left of it. This architecture eliminates the need to determine
how many layers to use and how many neurons should be in each layer.

output is scaled such that y = 0 is lean and y = 1 is rich. Equation 4 now
becomes

ŷ = sig(W1Pm + W2Ne + W3ti + W4 . . .

+W5x5 + . . . + WN−1xN−1) (5)

The problem is now to solve this equation for t̂is at the boundary, where
ŷ = 0.5. Knowing that sig(0) = 0.5, one may rewrite this equation as

ŷ = 0.5 = sig(W1Pm + W2Ne + W3t̂is + W4 . . .

+W5x5 + . . . + WN−1xN−1) (6)

(7)

or

0 = W1Pm + W2Ne + W3t̂is + W4 . . .

+W5x5 + . . . + WN−1xN−1 (8)

If one separates as the hidden neuron outputs into

Φ(Pm, Ne, ti) = W5x5 + W6x6 + . . . + WN−1xN−1, (9)

equation 8 can be manipulated as follows

0 = W1Pm + W2Ne + W3t̂is + W4 + Φ(Pm, Ne, t̂is) (10)

t̂is =
−1

W3

(W1Pm + W2Ne + W4 + Φ(Pm, Ne, t̂is)). (11)

393

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

Unfortunately, as Φ is a nonlinear function of ti, this is as far as one can
proceed algebraically on a typical network. However, it is possible to proceed if
one removes the dependence of Φ on ti by eliminating (or constraining to zero)
the weights that connect ti to the hidden neurons (but not the output neuron),
as shown in Figure 2. Equation 11 then takes the form of

t̂is =
−1

W3

(W1Pm + W2Ne + W4 + Φ(Pm, Ne)) (12)

which is a closed-form solution for the estimated stoichiometric injection pulse
width for operating conditions of intake manifold pressure and engine speed.

Pm Ne ti 1

x5 x6 x7

ŷ

Fig. 2: By setting the weights connecting ti and the hidden layers to zero (shown
as dashed lines), it becomes possible to invert the network. Note that the con-
nection between ti and the output neuron is not severed.

There are number of a consequences of zeroing the weights connecting one
input to the hidden neurons. The weighted sum for the output neuron will be a
linear function of ti. While the neuron output will still be a non-linear function,
it will be monotonically increasing or decreasing. This eliminates a class of prob-
lems with non-monotonic class boundaries, but eliminates the possibility of mul-
tiple solutions. One additional positive consequence of this architecture is that
the solution given in Equation 12 can be viewed as a linear equation, augmented
by a non-linear term Φ. This can be exploited for initialization or analysis of the
network. For example, it is known that the equation for tis is strongly linear with
Pm, with a small contribution from Ne and other non-linearities [3][4]. There-
fore, plausible initialization values are given by setting −W1/W3 and −W4/W3

to match the linear dependence on Pm and setting W2,W5,W6, . . . ,WN to zero
or small values. Further details may be found in [5].

4 Simulation Example

The inversion method described in the previous section was used to identify and
control a simulated V8 engine following the model in [4], assuming a fuel of

394

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

natural gas. The engine was fed inputs of intake manifold pressure and engine
speed that were previously recorded from actual city driving. Upon each injec-
tion, the controller used online backpropagation[1][6] to train a GNN to match
the simulated sensor signal (which included a pure time delay). The controller
then used the inverted network (equation 12) to determine an estimate of the
stoichiometric pulse width for the next injection. A network with 15 hidden
neurons was used for the model.

The results of the simulation study are shown in Figures 3 and 4. Figure 3
shows the relative air-fuel ratio during training. This is the air-fuel ratio divided
by the stoichiometric air-fuel ratio. The controller has initially poor performance
with approximately 30% error, but quickly improves. After 60 minutes, the error
improves to approximately 2%, before eventually reaching a steady state error
of approximately 0.03%, as shown in Figure 4.

Fig. 3: The relative air-fuel ratio, λ, defined as the measured air-fuel ratio divided
by the stoichiometric air fuel ratio, for a simulated V8 engine was controlled using
the network inversion scheme introduced in this paper.

With regard to computation speed, in a separate experiment this algorithm
was implemented on a Motorola MPC555 microcontroller. The calculation of
the stoichiometric pulse width took 0.335 ms, well within the requirements for
realtime operation. Since each inversion calculation takes approximately the
same time as one forward network calculation, each iteration of a numerical
solution can be expected to take at least the same time. Therefore, an iterative
solver would only be allowed seven iterations to find its solution in the 2.5 ms
time allotted between injections, which would probably not provide the required
accuracy for fuel-air control. This is especially true as gradient-based iterative
solvers can not be used since they have problems finding the transition point
of functions that have a sharp transition with very small slopes in areas away
from the transition point. For example, the bisection method would have an
unacceptably large error of 0.78% after 7 iterations [7].

395

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

Fig. 4: The error in lambda during training, defined as |λ − 1|, for the data in
Figure 3.

5 Conclusion

This paper has presented a method of inverting a neural network classifier. The
closed-form solution developed requires approximately the same number of cal-
culations as one forward pass through the network, eliminating the typical prob-
lem of excessive iterations required by numerical solutions. A simulated example
of fuel-air ratio control with online learning was presented, although the same
method may be used to find any classification boundary that is monotonic. The
authors expect to release experimental results for the same controller in the near
future.

References

[1] D. Saad, editor. On-line Learning in Neural Networks. Cambridge University Press,
Cambridge, 1998.

[2] P. Werbos. Backpropagation Through Time: What It Does and How to Do it. In Proceed-

ings of the IEEE, volume 78, pages 1550–1560, 1990.

[3] Charles Fayette Taylor. The Internal-Combustion Engine in Theory and Practice, vol-
ume I. M.I.T. Press, Cambridge, second edition, 1985.

[4] J.B. Heywood. Internal Combustion Engine Fundamentals. McGraw Hill, New York, 1988.

[5] T. Wiens, R. Burton, G. Schoenau, and M. Sulatisky. Intelligent fuel air ratio control of
gaseous fuel SI engines. Technical Report MISC-0168, Saskatchewan Research Council,
Saskatoon, 2006.

[6] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, New Jersey,
2nd edition, 1999.

[7] W H Press, S A Teukolsky, W T Vetterling, and B P Flannery. Numerical Recipes in

Fortran 77. Cambridge University Press, Cambridge, 2001.

396

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

