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Abstract. In this paper, a new method for the determination of missing
values in temporal databases is presented. This new method is based
on two projection methods: a nonlinear one (Self-Organized Maps) and
a linear one (Empirical Orthogonal Functions). The global methodology
that is presented combines the advantages of both methods to get accurate
candidates for missing values. An application of the determination of
missing values for fund return database is presented.

1 Introduction

The presence of missing values in the underlying time series is a recurrent prob-
lem when dealing with databases. Number of methods have been developed to
solve the problem and fill the missing values. The methods can be classified into
two distinct categories: deterministic methods and stochastic methods.

Self-Organizing Maps [1] (SOM) aim to ideally group homogeneous individ-
uals, highlighting a neighborhood structure between classes in a chosen lattice.
The SOM algorithm is based on unsupervised learning principle where the train-
ing is entirely stochastic, data-driven. The SOM algorithm allows projection of
high-dimensional data to a low-dimensional grid. Through this projection and
focusing on its property of topology preservation, SOM allows nonlinear inter-
polation for missing values.

Empirical Orthogonal Functions (EOF) [2] are deterministic, enabling linear
projection to a high-dimensional space. They have also been used to develop
models for finding missing data [3]. Moreover, EOF models allow continuous
interpolation of missing values, but are sensitive to the initialization.

This paper presents a new methodology, which combines the advantages of
both the SOM and the EOF. The nonlinearity property of the SOM is used as
a denoising tool and then the continuity property of the EOF method is used to
efficiently recover missing data.

2 Self-Organizing Map

The SOM algorithm is based on an unsupervised learning principle, where train-
ing is entirely data-driven and no information about the input data is required
[1]. Here we use a 2-dimensional network, compound in c units (or code vectors)
shaped as a square lattice. Each unit of a network has as many weights as the
length T of the learning data samples, xn, n = 1, 2, ..., N . All units of a network
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can be collected to a weight matrix m (t) = [m1 (t) ,m2 (t) , ...,mc (t)] where
mi (t) is the T -dimensional weight vector of the unit i at time t and t represents
the steps of the learning process. Each unit is connected to its neighboring units
through neighborhood function λ(mi,mj , t), which defines the shape and the
size of the neighborhood at time t. Neighborhood can be constant through the
entire learning process or it can change in the course of learning.

Learning starts by initializing the network node weights randomly. Then,
for randomly selected sample xt+1, we calculate a Best Matching Unit (BMU),
which is the neuron whose weights are closest to the sample. BMU calculation is
defined as mBMU(xt+1) = arg minmi,i∈I {‖xt+1 − mi (t)‖}, where I = [1, 2, ..., c]
is the set of network node indices, BMU denotes the index of the best matching
node and ‖.‖ is standard Euclidean norm.

If the randomly selected sample includes missing values, the BMU cannot be
solved outright. Instead, an adapted SOM algorithm, proposed by Cottrell and
Letrémy [4], is used. The randomly drawn sample xt+1 having missing value(s)
is split into two subsets xT

t+1 = NMxt+1
∪ Mxt+1

, where NMxt+1
is the subset

where the values of xt+1 are not missing and Mxt+1
is the subset where the

values of xt+1 are missing. We define a norm on the subset NMxt+1
as

‖xt+1 − mi (t)‖NMxt+1

=
∑

k∈NMxt+1

(xt+1,k − mi,k(t))
2
, (1)

where xt+1,k for k = [1, ..., T ] denotes the kth value of the chosen vector and
mi,k(t) for k = [1, ..., T ] and for i = [1, ..., c] is the kth value of the ith code
vector.

Then the BMU is calculated with

mBMU(xt+1) = arg min
mi,i∈I

{

‖xt+1 − mi (t)‖NMxt+1

}

. (2)

When the BMU is found the network weights are updated as

mi (t + 1) = mi (t) − ε(t)λ
(

mBMU(xt+1),mi, t
)

[mi (t) − xt+1] ,∀i ∈ I, (3)

where ε(t) is the adaptation gain parameter, which is ]0, 1[-valued, decreasing
gradually with time. The number of neurons taken into account during the
weight update depends on the neighborhood function λ(mi,mj , t). The number
of neurons, which need the weight update, usually decreases with time.

After the weight update the next sample is randomly drawn from the data
matrix and the procedure started again by finding the BMU of the sample. The
recursive learning procedure is stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some clusters containing
our data. Cottrell and Letrémy proposed to fill the missing values of the dataset
by the coordinates of the code vectors of each BMU as natural first candidates
for missing value completion:

π(Mx) (x) = π(Mx)

(

mBMU(x)

)

, (4)
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where π(Mx) (.) replaces the missing values Mx of sample x with the correspond-
ing values of the BMU of the sample. The replacement is done for every data
sample and then the SOM has finished filling the missing values in the data.

3 Empirical Orthogonal Functions

This section presents Empirical Orthogonal Functions (EOF) [2, 5]. In this
paper, EOF are used as a denoising tool and for finding the missing values at
the same time [3].

The EOF are calculated using standard and well-known Singular Value De-
composition (SVD), X = UDV∗ =

∑K

k=1 ρkukvk, where X is 2-dimensional
data matrix, U and V are collections of singular vectors u and v in each di-
mension respectively, D is a diagonal matrix with the singular values ρ in its
diagonal and K is the smaller dimension of X (or the number of nonzero singular
values if X is not full rank). The singular values and the respective vectors are
sorted to decreasing order.

When EOF are used to denoise the data, not all singular values and vectors
are used to reconstruct the data matrix. Instead, it is assumed that the vectors
corresponding to larger singular values contain more data with respect to the
noise than the ones corresponding to smaller values [2]. Therefore, it is logical
to select q largest singular values and the corresponding vectors and reconstruct
the denoised data matrix using only them.

In the case where q < K, the reconstructed data matrix is obviously not the
same than the original one. The larger q is selected, the more original data,
which also includes more noise, is preserved. The optimal q is selected using
validation methods, for example [6].

EOF (or SVD) cannot be directly used with databases including missing
values. The missing values must be replaced by some initial values in order
to use the EOF. This replacement can be for example the mean value of the
whole data matrix X or the mean in one direction, row wise or column wise.
The latter approach is more logical when the data matrix has some temporal or
spatial structure in its columns or rows.

After the initial value replacement the EOF process begins by performing
the SVD and the selected q singular values and vectors are used to build the
reconstruction. In order not to lose any information, only the missing values of
X are replaced with the values from the reconstruction. After the replacement,
the new data matrix is again broken down to singular values and vectors with
the SVD and reconstructed again. The procedure is repeated until convergence
criterion is fulfilled.

4 Global Methodology

The two methodologies presented in the previous two sections are combined and
the global methodology is presented. The SOM algorithm for missing values
is first ran through performing a nonlinear projection for finding the missing
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values. Then, the result of the SOM estimation is used as initialization for the
EOF method.

For The SOM we must select the optimal grid size c and for the EOF the
optimal number of singular values and vectors q to be used. This is done using
validation, using the same validation set for all combinations of the parameters
c and q. Finally, the combination of SOM and EOF that gives the smallest
validation error is used to perform the final filling of the data.

Even the SOM as well as the EOF are able to fill the missing values alone, the
experimental results demonstrate that together the accuracy is better. The fact
that these two algorithms suit well together is not surprising. Two approaches
can be considered to understand the complementarity of the algorithms.

Firstly, SOM algorithm allows nonlinear projection. In this sense, even for
dataset with complex and nonlinear structure, the SOM code vectors will succeed
to capture the nonlinear characteristics of the inputs. However, the projection is
done on a low-dimensional grid (in our case two-dimensional) with the possibility
of losing the intrinsic information of the data.

EOF method is based on a linear transformation using the Singular Value
Decomposition. Because of the linearity of the EOF approach, it will fail to
reflect the nonlinear structures of the dataset, but the projection space can be
as high as the dimension of the input data and remains continuous.

5 Experimental Results

For illustration, we use a dataset of North American fund returns1 composed
with 679 funds on a 4-year period of 219 weekly values. This gives us a dataset X

of the size 219×679 with a total of 148 701 values. The fund return correspond
to the yield of asset values between two consecutive dates as rt = vt+1

vt

−1, where
vt is the value of the considered asset at time t.

Figure 1 shows 10 rescaled fund values
(

v
′

t = 100
∏t

i=1 (1 + ri)
)

. The fund

values are correlated time series including first order trends. There are no missing
values contained in the database.
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Fig. 1: Rescaled asset values of 10 funds present in the database.

1Data provided by Lipper, A Reuters Company.
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Before running any experiments, we randomly remove 7.5 percent of the
data to a test set. The test set contains 11 152 values. For validation, the same
amount of data is removed from the dataset. Therefore, for the model selection
and learning we have a database with total of 15 percent missing values.

The Monte Carlo Cross-Validation with 10 folds is used to select the optimal
parameters for the SOM, the EOF and the SOM+EOF method. The 10 selected
validation sets are the same for each method. All validation errors are shown in
Figure 2. In the case of the SOM+EOF, the errors shown are minimum errors
after EOF with different SOM sizes.
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Fig. 2: Validation errors w.r.t. SOM size or number of EOF. SOM validation
error (Solid line), EOF (dashed line) and SOM+EOF (dash-dotted line).

The optimal size of the SOM grid is found to be 28×28, which is a total of
784 units. Therefore, we have more code vectors in the SOM than observations
(629). It means that we have nonlinear interpolation between observations and
better approximation of the missing values with more units than data.

When the EOF is performed alone, initial values are substituted as the col-
umn means of the original matrix, calculated only with the known values. From
the Figure 2 the smallest error with the EOF method is achieved with q equal
to 6. This number of EOF is very small compared to the maximum of 219 EOF,
which is the smaller dimension of the data. It suggests quite strong noise influ-
ence in the data and that there is only a small number of efficient EOF needed
to represent the denoised data.

The smallest error achieved with the SOM+EOF method is with SOM grid
size 27×27 and with EOF parameter q equal to 39. The number of selected EOF
is much larger with the SOM initialization than with the column mean initializa-
tion. It suggests there are more efficient EOF to use in the approximation of the
missing values than with the plain column mean initialization and that the SOM
has already denoised the data. The optimal SOM grid size in the SOM+EOF
method is found out to be roughly the same size than when performing the SOM
alone. It is quite intuitive to think that the best possible filling achieved with
SOM is enhanced with linear, high-dimensional projection of the EOF. From the
Figure 2 it is clearly notable that with every SOM size the SOM+EOF method
gives lower validation error than either SOM or EOF alone.

Table 1 contains the validation and test errors of all three methods.
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Table 1: Learning and Test Errors for SOM, EOF and SOM+EOF.

10−5 Learning Error Test Error
SOM 5.83 5.57
EOF 6.61 6.13
SOM + EOF 4.63 4.34

From the Table 1, we can see that the SOM+EOF outperforms the SOM
reducing the validation error by 21 percent and the test error by 22 percent.
The EOF alone is not performing as well as the SOM alone.

6 Conclusion

In this paper, we have compared 3 methods for finding missing values in temporal
databases. The methods are Self-Organizing Maps (SOM), Empirical Orthogo-
nal Function (EOF) and the combination of the two SOM+EOF.

The advantages of the SOM include the ability to perform nonlinear pro-
jection of high-dimensional data to lower dimension with interpolation between
discrete data points. For the EOF, the advantages include high-dimensional lin-
ear projection of high-dimensional data and the speed and the simplicity of the
method. The SOM+EOF includes the advantages of both individual methods,
leading to a new accurate approximation methodology for finding the missing
values. The performance obtained in test show the accuracy of the new method-
ology.

It has also been shown experimentally that the optimal number of code vec-
tors used in the SOM has to be larger than the number of observations. It is
necessary in order to take the advantage of the self-organizing property of the
SOM and the interpolation ability for finding the missing data.

For further work, the modifications and performance upgrades for the global
methodology are fine-tuned for different types of datasets. The methodology
will then be applied to datasets from climatology.
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