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Abstract. In a previous work, we developed a quasi-efficient maximum

likelihood approach for blindly separating stationary, temporally corre-

lated sources modeled by Markov processes. In this paper, we propose to

extend this idea to separate mixtures of non-stationary sources. To handle

non-stationarity, two methods based respectively on blocking and kernel

smoothing are used to find parametric estimates of the score functions of

the sources, required for implementing the maximum likelihood approach.

Then, the proposed methods exploit simultaneously non-Gaussianity, non-

stationarity and time correlation in a quasi-efficient manner. Experimental

results using artificial and real data show clearly the better performance of

the proposed methods with respect to classical source separation methods.

1 Introduction

Linear instantaneous Blind Source Separation (BSS) methods aim at recovering
a set of unobserved source signals from several observations which are supposed
to be linear transformations of these sources. In its simplest form, this problem
can be formulated as follows. Assume that we have N samples of K linear
instantaneous mixtures of K source signals. The noiseless linear mixture model
is defined as

x(t) = As(t)

where x(t) = [x1(t), . . . , xK(t)]T and s(t) = [s1(t), . . . , sK(t)]T are, respectively,
observations and source vectors and A is an unknown K × K mixing matrix.
The aim of blind source separation is to find an estimate of the matrix A up to
scaling and permutation. It has been proved that this problem can be solved by
exploiting non-Gaussianity, autocorrelation or non-stationarity [1].
In a previous work [2], we proposed a blind source separation method based on
a maximum likelihood approach where a Markov model was used to simplify
the joint Probability Density Functions (PDF) of successive samples of tempo-
rally correlated stationary one-dimensional independent sources. This method
exploits both source non-Gaussianity and autocorrelation and has the advan-
tage of providing an asymptotically efficient estimator. In [3], we extended this
approach to images and proposed two major modifications to reduce the com-
putational cost of the algorithm.
In this work, we extend the method of [2] to non-stationary one-dimensional
sources by allowing their PDF to change with time. As a result, the proposed
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approach can exploit simultaneously non-Gaussianity, non-stationarity and time
correlation in a quasi-optimal manner.
Moreover, while most of the BSS methods based on non-stationarity [4, 5, 6] are
second-order methods exploiting only the variations of the source variances, our
method is able to also take advantage of higher-order non-stationarities.

2 Maximum Likelihood separation method

Assuming the linear instantaneous mixture model x = As, our goal is to estimate
a separating matrix B = A

−1 up to a permutation and a scaling matrix. In a
maximum likelihood approach, this can be done by maximizing, with respect to
the separating matrix B, the joint PDF of all the samples of all the components
of the observation vector x, denoted by

fx(x1(1), . . . , xK(1), . . . . . . , x1(N), . . . , xK(N)) (1)

Supposing source signals to be mutually independent and q-th order Markov
sequences 1, this joint PDF can be written as

( 1

|det(B−1)|

)N
K
∏

i=1

[

fsi(t)(e
T
i Bx(1), . . . , eT

i Bx(q))

N
∏

t=q+1

fsi(t)(e
T
i Bx(t)|eT

i Bx(t− 1), . . . , eT
i Bx(t− q))

]

(2)

where ei is the ith column of the identity matrix. Defining the conditional score
function at time t of a source si with respect to a source sample si(t− l) by

ψl
si(t)

(si(t)|si(t− 1), . . . , si(t− q)) =
−∂logfsi(t)(si(t)|si(t− 1), . . . , si(t− q))

∂si(t− l)
,

∀ 0 ≤ l ≤ q

the maximization of the logarithm of (2) yields finally the following system of
K(K − 1) estimating equations in the same way as in [2]

EN−q

[

q
∑

l=0

ψl
si(t)

(si(t)|si(t−1), . . . , si(t−q))sj(t−l)
]

= 0 i 6= j = 1, . . . ,K (3)

where EN−q[.] is the temporal mean over (N − q) samples of the source signals.
Replacing si(.) by ei

T
Bx(.), this system may be solved to estimate B up to a

diagonal and a permutation matrix as in [2]. This may be done for example
using a modified equivariant version of the Newton-Raphson algorithm, which

1Markov sequence is used to model time correlation of the sources and to simplify the joint
PDFs involved in likelihood functions. Contrary to ARMA models, it is able to model the
nonlinear dependence among the samples of each source.
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can be considered as a one-dimensional version of the algorithm presented in [3],
for possibly non-stationary sources. In practice, the actual sources being un-
kown, their score functions may be estimated only via the reconstructed sources
ŝ = B̂x(t) using an iterative algorithm. In [2], we supposed the sources were
stationary so that ψl

si(t)
= ψl

si
did not vary in time. In this paper, however, we

are concerned with non-stationary sources, so that ψsi(t) may vary with t and
we have no prior knowledge about the way they vary, except that they should
change slowly. In the following section, two alternative approaches are proposed
to handle this non-stationarity.

3 Non-stationary estimation of the score functions

In order to model the non-stationarity of the score functions, we adapt the two
methods, proposed in [7], initially used to handle the non-stationarity of tempo-

rally uncorrelated sources.

1. Blocking method: The temporal interval [0, T ] is split into L subinter-
vals Tj , j = 1, . . . , L. Assuming that the score functions vary slowly with
time, they are considered to be constant over each subinterval and denoted as
ψl

si(t)
= ψl

si
(j), ∀ t ∈ Tj. In each interval Tj, the conditional score functions

may be estimated by the non-parametric estimator used in [2]. However, in order
to reduce the computational cost, we use a third-order polynomial parametric
estimator which may be considered as a one-dimensional version of the estimator
presented, for stationary sources, in [3].

2. Kernel smoothing method: The estimation of the score functions by third-
order polynomials requires the computation of some mathematical expectations
generally denoted E

[

φ(xi(t), xi(t − 1) . . . , xi(t − q))
]

where φ(.) is a nonlinear
function (see [3] or [7] for more details).
In the blocking method, these expectations are estimated by the temporal mean
of φ(.) on each block. In the kernel smoothing method, however, the expectations
are estimated using the following formula

Ê
[

φ(xi(t), . . . , xi(t− q))
]

=

∑N

τ=q+1 κ(
τ−t
ν

)φ(xi(τ), . . . , xi(τ − q))
∑N

τ=q+1 κ(
τ−t

ν
)

(4)

where κ(.) is a kernel function and ν is a window width parameter. The kernel
smoothing method provides a local average of the function around the time point
of interest and should be better than the blocking method, especially when signal
statistics change rapidly. However, it is computationally more expensive. To
reduce the computational cost, the kernel smoother (4) can be approximated
using sparser averaging, which yields the following estimator

Ê
[

φ(xi(t), . . . , xi(t− q))
]

=

∑L

l=l1
κ(

lN

L
−t

ν
)φ(xi(

lN
L

), . . . , xi(
lN
L

− q))
∑L

l=l1
κ(

lN

L
−t

ν
)
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where L is chosen so that N
L

is an integer and l1 is the first integer greater than
L(q+1)

N
. Moreover, the choice of L should be adapted to the smoothness of the

signal.
It can be noted that the kernel smoothing approach is more flexible than the
blocking approach since the window parameter ν can be adapted, at each itera-
tion, to the reconstructed source statistics.

4 Algorithm

The BSS method which results from the above principles operates as follows.

1. initialization of the separating matrix: B̂ = I

2. Repeat until B̂ does not change significantly:

(a) computation of output signals ŝ = B̂x.

(b) normalization of ŝ to obtain unit variances.

(c) non-stationary parametric estimation of score functions.

(d) resolution of the system of equations (3), to obtain a new estimate B̂.

5 Experimental Results

5.1 Artificial data

In the following simulations, we compare our non-stationary Markovian meth-
ods with the standard Markovian maximum likelihood separation approach as
presented in [2]. In the first experiment, two independent white and uniformly
distributed signals e1(t) and e2(t) are filtered by two autoregressive (AR) fil-
ters in order to generate two 1st-order Markovian sources following the model
si(t) = ei(t) + ρisi(t − 1). The filter coefficients ρ1 and ρ2 are set to 0.2 and
0.9, respectively. Each resulting signal is then split into P blocks and each block
is multiplied by a different coefficient αp, p = 1, . . . , P to obtain non-stationary
sources. The generated sources are then artificially mixed by the mixing ma-

trix A =

(

1 0.99
0.99 1

)

. Then, our blocking method using L blocks is used

to obtain the estimated sources ŝi(t). For each experiment, the output Signal

to Interference Ratio (in dB) is computed by SIR = 1
K

∑K

i=1 10 log10
E[s2

i
]

E[(ŝi−si)2] ,

after normalizing the estimated sources, ŝi, so that they have the same variances
and signs as the source signals, si.
The mean of SIR over 100 Monte Carlo simulations, with N = 1000 and P = 8,
is computed and shown in Fig. 1 as a function of the number of blocks L used
in our algorithm.
The case of one block, which yields an average SIR of 13 dB, corresponds to
the standard Markovian Likelihood Method. It can be noticed that the non-
stationary version of our Markovian algorithm outperforms the standard one,
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whatever the number of blocks considered in the proposed model. The best per-
formance is reached when L = P , so that the mean and the standard deviation
of SIR were 37 dB and 7 dB, respectively. Nevertheless, even if signals are over-
blocked, we still obtain an SIR higher than 35 dB provided that L is lower than
20, so that the number of samples in each block is sufficient for score function
estimation.

In the second experiment, we want to highlight the advantage of the kernel
smoothing non-stationary method compared to the blocking one. Two indepen-
dent white and uniformly distributed signals are generated and filtered by the
same AR filters as above. The resulting 1000-sample signals are split into 200
blocks, and each block is multiplied by a different coefficient so that the variances
change quite rapidly. The sources are mixed artificially by the same matrix A as
in the first experiment and the mean of SIR over 100 Monte Carlo simulations
using a Gaussian kernel is computed and shown in Fig. 2 as a function of the
kernel standard deviation σ. The kernel smoothing method led to an average
SIR of 41 dB for σ = 100 while the blocking method led to 35-dB at best. The
standard deviation of the SIR for 100 Monte Carlo simulations is quite similar
to the blocking method one, in this case.
Nevertheless, this approach is very time consuming compared to the blocking
algorithm, especially for long signals. Using a mixture of two 1000-sample non-
stationary source signals of P=8 blocks, the running times of blocking and kernel
methods on a 1.53 GHz AMD-athlon PC were 0.2 seconds and 25 seconds re-
spectively, for each iteration.
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Figure 1: Mean of SIR as a function
of the number of blocks.
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Figure 2: Mean of SIR as a function of
the Gaussian kernel standard deviation.

5.2 Real data

In another experiment, we applied our blocking non-stationary Markovian method
to a linear instantaneous mixture of two 100000-sample speech signals. The
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source signals were artificially mixed using the same matrix A as in the previous
section. The mean of output SIRs computed over 10 couples of speech signals
using our method is compared to the mean of the SIRs achieved by 19 standard
algorithms available in the ICALAB Toolbox [8, 9]. Our method outperforms
the 19 algorithms, with an average SIR of 91 dB while ICALAB algorithms led
to 58-dB mean SIR at best (SYM-WHITE method). In the last experiment,
we applied our method and the 19 ICALAB algorithms to an artificial linear
instantaneous mixture of 8 real speech signals. While our algorithm led to a
66-dB SIR, the best performance achieved by ICALAB algorithms was a 36-dB
SIR (SYM-WHITE algorithm).

6 Conclusion

In this paper, we proposed an extension to non-stationary sources of our Marko-
vian blind source separation algorithm. Two approaches, based respectively on
blocking and kernel smoothing have been used in order to take into account non-
stationarity. Experimental results, especially with real speech signals, proved the
better performance of our non-stationary method in comparison to a large num-
ber of standard algorithms available in the ICALAB toolbox. An extension of
this method to bi-dimensional sources will be developed in future works.
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