
Human Motion Recognition using Nonlinear
Transient Computation

Nigel Crook and Wee Jin Goh

School of Technology - Department of Computing
Oxford Brookes University, Wheatley Campus, Oxford - United Kingdom

Abstract. A novel approach to human motion recognition is proposed
that is based on a variation of the Nonlinear Transient Computation Ma-
chine (NTCM). The motion data used to train the NTCM comes from
point-light display video sequences of a human walking. The NTCM is
trained to distinguish between sequences of video frames that depict co-
ordinated walking motion from those that depict uncoordinated (random)
motion.

1 Introduction

Artificial neural networks (ANNs) have been used extensively in recent years
for the recognition of human motion [1, 2]. ANN approaches to human motion
recognition broadly divide into two categories: those that use what could be
described as standard ANN technologies (e.g. layered feedforward networks
trained with variants of Error Backpropagation [3]), and those that use more
biologically plausible neural network models [2]. The approach presented in this
paper does not fall into either of these categories. Instead, a novel method for
motion recognition is proposed based on Nonlinear Transient Computation [4, 5].

Nonlinear Transient Computation provides a means of classifying time-varying
input signals using the dynamics generated by a nonlinear attractor. The input
signals momentarily perturb the dynamics of the nonlinear system away from
the attractor. This perturbation is proportional to the input that caused it.
The subsequent evolution of the system follows a transient back to the attractor
forming a trajectory that is uniquely determined by the original input signal.
A simple linear readout neuron can then be trained to recognise the transients
that are generated by distinct classes of input signals.

The properties of the Nonlinear Transient Computation machine (NTCM)
have been studied in some detail elsewhere [4, 5, 6]. This paper is the first to ex-
plore the possibility of applying the NTCM to the problem of recognising human
motion within video sequences of point-light displays. In this study, a variation
of the NTCM (denoted as the LTCM) is used that employs the Lorenz equations
[7] to generate the chaotic attractor [6]. The LTCM is trained to distinguish be-
tween sequences of video frames of coordinated human (walking) motion from
sequences of video frames showing uncoordinated motion (i.e. sequences of ran-
domly selected frames from a human walking motion video).
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2 The LTCM model

The LTCM consist of two components. The first is the device described as NT

that provides the nonlinear attractor that gives rise to the transients induced by
external input. The second is the set of simple linear readout devices NR, each
trained to recognise transients that correspond to a class of input signals.

The device denoted as NT can be any system that provides a nonlinear
attractor. For example, it could be a large pool of recurrently connected neurons
configured to generate near-chaotic firing patters [8]. Our previous work with the
NTCM has used the Nonlinear Dynamic State neuron to provide the attractor
for NT [9]. In this paper, NT is modelled using the chaotic attractor provided
by the Lorenz system, which has been thoroughly studied within the field of
dynamical systems theory [7]. The attractor produced by the Lorenz equations
is a two-dimensional surface in three dimensional phase space. Consequently,
this system can be perturbed by an input vector with up to three dimensions
that can be arbitrarily assigned to its state variables x, y and z (see [6] for
dealing with input vectors with more than three dimension):

ẋi = σ(yi − xi) + wxIx(t)
ẏi = xi(τ − zi) − yi + wyIy(t)
żi = xiyi − βzi + wzIz(t)

where wk is the weight of the kth dimension of input vector I which perturbs the
system at time t, and xi, yi and zi are the state variables of the ith trajectory
of NT (see below). The chaotic nature of this system guarantees that two simi-
lar but distinct perturbations will eventually result in very different trajectories
around the attractor (a property often described as sensitivity to initial condi-
tions). However, even with a system that is as chaotic as the Lorenz attractor,
similar perturbations will cause similar trajectories in the short term. In other
words, similar inputs to NT will result in transients that are initially similar but
that later diverge as the two transients evolve. This can been exploited to adjust
the sensitivity of the NTCM to the presence of noise in the input signals [5, 4].

Given that the perturbation caused by an input is directly proportional to
that input, it becomes possible to construct a classifier based on the transients
coming from the attractor. An observer trained on the transients will be able to
use the afore mentioned property to differentiate between classes of input. Due
to the chaotic nature of the system, transients will diverge as the system evolves
along time. It is this nonlinear divergence that allows for the classification of
patterns that are otherwise nonlinearly separable. There isn’t scope within this
paper to fully explore the function of the non-linear attractor provided by NT in
the pattern recognition process; this has been dealt with elsewhere [6]. However,
it is worth briefly outlining that the LTCM has been successfully applied to the
classification of static input, such as the IRIS dataset. The results obtained are
comparable with other well known methods of pattern classification [6].
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3 Motion Recognition

This paper proposes a novel approach to human motion recognition based on the
LTCM. In this study, short video sequences of point-light displays are given as
input to the LTCM, which then has to determine whether or not each sequence
is showing a human walking motion. Each frame in the point-light display
sequences used in this study has up to 13 points that are located on the major
joints of the human body (Figure 4). As the sequence progresses certain points
disappear through the occlusions caused by limbs moving over an area of the
body. The approach to motion recognition proposed here does not require prior
knowledge of which points correspond to which joints in the body. Neither does
it require the tracking of points from one frame to another. Consequently, the
appearance or disappearance of points from the frames as the sequence progresses
does not cause any difficulties for the LTCM motion recognition system.

In the system presented here, the transient device NT maintains 13 numbered
trajectories simultaneously in the same attractor space. Each point within a
point-light display frame causes a perturbation on one of these 13 trajectories,
with a one-to-one correspondence from points to trajectories for each frame.
Points are assigned to trajectories in an arbitrary but consistent manner: For
each frame the points are sorted using the y-coordinate as the primary sort key
and the x-coordinate as the secondary sort key. The sorted points are then
assigned to trajectories in increasing order of trajectory number. If there are
n < 13 points within a given frame, then the trajectories numbered n + 1 to
13 remain unassigned for that frame. At the start of the frame sequence all
13 trajectories are initialised to an arbitrarily chosen point within the basin of
attraction of NT .

The transient device NT is centrally located with respect to its receptive
field on the point-light display. As each frame of the motion is displayed, the
points in the frame are assigned to the 13 trajectories as described above. The
relative position of a point from the center of the receptive field forms a 2D vector
which is then scaled and added to the assigned trajectory in the x-y plane of
the phase space (in this application, the trajectories are not perturbed in the z
dimension). Thus each trajectory that has been assigned a point from the frame
is perturbed in a direction that is proportional to the vector produced by the
assigned point. The 13 trajectories are evolved for a fixed number of times steps
(5 in the experiments reported below) between the presentation of the frames.
Once all the frames have been presented to the LTCM, the 13 trajectories are
evolved for a further fixed number of time steps. The time series for the three
state variables are then summed to form a single time series Ii for input pattern
i, which is then sampled a regular intervals of k time steps (k = 10 in the
experiments reported below) to form the input Ri for the readout device NR:

Ii(t) = xi(t) + yi(t) + zi(t)
Ri = {Ii(t) : t mod k = 0}
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In the experiments reported below, the readout device NR is a single perceptron
trained using the generalised delta rule.

The perturbations to each of the 13 trajectories push them away from the
attractor in a direction determined by the input vectors, causing each trajectory
to enter a transient back towards the attractor. These transients are proportional
to the sequence of perturbations that caused them, and hence are proportional
to the point-light sequences that were given as input to the LTCM.

4 Experimental Results

A 75-frame point-light display video sequence of a walking human provided the
data for the experiments reported here. Positive examples of walking motion
were generated by taking sequences consisting of 10 consecutive frames from
the walking motion video (See Figure 1). A total of 65 10-framed examples of
walking sequences were extracted from the video. Negative examples of walking
motion were constructed by taking 65 sets of 10 randomly chosen frames from
the walking video. Hence, although each frame of a negative sequence is a
valid walking pose, the whole 10-frame random sequence does not constitute a
recognisable walking motion. In a sense, the positive examples of walking are
instances of coordinated motion, whilst the negative examples are instances of
uncoordinated (random) motion.

Fig. 1: An example of a 10-frame walking sequence

The readout device of the LTCM is a simple perceptron capable only of
correctly partitioning linearly separable clusters of input patterns. Hence the
chaotic attractor provided by NT is a crucial element of the LTCM’s motion
recognition apparatus enabling it to solve linearly inseparable problems. To
show that the walking motion recognition problem is linearly inseparable, and
to demonstrate the utility of the chaotic attractor in solving this problem, the
walking motion data will also be applied to a single perceptron (i.e. the LTCM
without the chaotic attractor given by NT ). The motion data is presented to the
perceptron as follows: each frame of the sequence is flattened out, so that the
coordinates of the points p in frame f are presented consecutively as follows :
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Training Set Test Set
Accuracy Accuracy Thresh(0.8)

Classifier MSE 95% 80% MSE 95% 80% Sen. Spec.

P: 0.135 83.8% 86.2% 0.438 48.5% 52.3% 43.7% 74.5%

LTCM:
A(0..50) 0.101 67.1% 80.9% 0.212 57.7% 67.7% 72.4% 87.4%

B(50..200) 0.002 99.8% 99.8% 0.141 66.9% 73.8% 75.4% 80.9%
C(0..200) 0.003 99.7% 99.7% 0.123 70.0% 80.0% 83.8% 83.6%

Table 1: Results from the 10-fold cross validation experiments.

[p1f
x, p1f

y , p2f
x, p2f

y , ...p13f
x, p13f

y ]; All 10 frames of a sequence are presented as one
input pattern (hence the perceptron has 260 inputs). The x and y coordinates
of each point are scaled to values in the range [0..1]. Note that this encoding of
the motion data preserves the ordering of the points in each frame (i.e. point 12
is always the right knee of the walking human, whereas point 13 is always the
right ankle). This gives the perceptron information that is not available to the
LTCM due to the occlusion of points during the walking sequence. The results
from the perceptron will also provide a baseline for these experiments.

10-fold cross validation was used to train and test the LTCM and the single
perceptron. The 65 positive and 65 negative examples of walking motion were
randomly divided in to 10 sets. The LTCM and the single perceptron were
trained on nine of the sets and tested on the tenth set. This was repeated so
that all 10 sets were, in turn, used as test data, with the remaining nine sets
used as training data in each case.

A key question in this work concerns the extent to which the transients that
evolve after the input has been presented contribute to the pattern recognition
capabilities of the LTCM. To shed some light on this, three different versions
of the LTCM were constructed: in the first (LTCM-A) the readout neuron was
only allowed to observe the transients during time steps [0..50] while the input
was being presented (each 10 frame sequence is presented to the LTCM in the
first 50 time steps of the evolution of the trajectories); in the second version
(LTCM-B) the readout neuron only observes the trajectories after the inputs
have been presented (i.e. time steps [50..200]); the third version (LTCM-C) is
allowed to observe the who trajectory up to time step 200 (i.e. [0..200]).

5 Discussion

The results of the 10-fold cross validation experiments with the perceptron (de-
noted P) and the three versions of the LTCM (denoted A, B and C) are presented
in Table 1. The table shows the mean squared error (MSE) and the accuracy for
both the training set and the test set for each experimental run. Two levels of
accuracy are shown: the columns headed 95% shows the percentage of outputs
from the data set that were within 5% of the target output for each pattern;
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similarly the columns headed 80% shows the percentage of outputs that were
within 20% of the target outputs. The final two columns show the sensitivity
(column headed Sen. - the percentage of true postive outputs), and the speci-
ficity (column headed Spec. - the percentage of true negavite outputs) for all
four classifiers on the data set when a threshold of 0.8 is applied to their outputs.

As can be seen from Table 1 the perceptron performs reasonably well on the
training data set but poorly on the test set. Given that on average the test
sets consist of 50% postive and 50% negative examples of walking motion, the
accuracy figures of the perceptron on this data suggest that it performs little
better than chance guess on recognising positive examples of walking motion.
The poor performance of the perceptron on this data suggests that this walking
motion recognition problem is linearly inseperable.

All three versions of the LTCM out-perform the perceptron on this problem.
The LTCM-A, which observes the first 50 time steps of the evolution of NT has
the lowest accuracy level of the three LTCMs, but is the best at recognising non-
walking motion sequences. LTCM-B, which observes the transient after input
(time steps 50-200) performs best in terms of recognising true positives with the
threshold output. However, LTCM-C, which observes the whole transient of NT

has the highest level of accuracy, whilst maintaining moderately high sensitivity
and specificity.

Whilst these results are not conclusive, they suggest the attractor provided
by NT performs a critical role in the LTCM in enabling it to solve linearly
inseparable problems. Furthermore, LTCM has demonstrated an ability to dif-
ferentiate between coordinated and uncoordinated motion. Future work in this
area will compare the NTCM with other approaches to motion recognition.
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