
A Unified View of TD Algorithms
Introducing Full-gradient TD and Equi-gradient descent TD

Manuel Loth1 ∗ and Philippe Preux1 and Manuel Davy2

1- INRIA-Futurs - SequeL & Université de Lille / CNRS LIFL
Villeneuve d’Ascq - France

2- INRIA-Futurs - SequeL & École Centrale de Lille / CNRS LAGIS

Abstract. This paper addresses policy evaluation in MDP. It provides a
unified view of algorithms such as TD(λ), LSTD(λ), iLSTD, and residual-
gradient TD. We assert that they all consist of minimizing a gradient
function and differ in the form of this function and their means of mini-
mizing it. Building on this unified view, two new schemes are introduced:
Full-gradient TD which uses a generalization of the principle introduced
in iLSTD, and EGD TD which reduces the gradient by successive equi-
gradient descents. These three algorithms share the worthy property of
using much more efficiently the samples than TD, while keeping the good
properties of gradient descent schemes.

1 The policy evaluation problem

A Markov Decision Process (MDP) [1] describes a dynamical system in which an
agent has to learn a behavior so as to reach a given goal, in an optimal way. In
this paper, the state of the system s ∈ S may be either discrete, or continuous.
The agent applies an action u ∈ U at each time step t ∈ N . This drives the
system to a state s′ = u(s) at the next time step, where u is generally non-
deterministic. A reward r ∈ R ⊂ R is associated to each transition. A policy π
defines the behavior of the agent on the system: it is a mapping from S to U .
One objective is to find a policy that maximizes the rewards. To this end, we
need to evaluate the performance of any policy, and define its value function vπ:

vπ(s0) = E

(∞∑
t=0

γtr(st
π(st)−−−→ st+1)

)

where 0 < γ ≤ 1 is a discount factor1.

Given a trajectory s0
r0−→ s1

r1−→ . . .
rT−1−−−→ sT (where rt = r(st

π(st)−−−→ st+1)),
all the information about v lies in the following set of Bellman equations2:⎧⎨

⎩
v(s0) = r0 + γv(s1)
. . .
v(sT−1) = rT−1 + γv(sT)

∗ML gratefully acknowledges the support from Region Nord - Pas-de-Calais and INRIA
(PhD grant).

1We will now use the notation v for vπ .
2The equalities are abusive when the actions are not deterministic, but averaging these

equations converges to valid equations as the number of samples tends to infinity.

289

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

The policy evaluation problem thus consists of finding a function v̂ that sat-
isfies Bellman’s equations as good as possible, using one or several trajectories.
In several previous works, this has been achieved by searching v̂ as a linear com-
bination of basis functions (features): v̂(s) =

∑n
i=1 ωiφi(s). Here, we propose to

cast several important previous methods in a unified and simple framework, as
follows:
• define a n-vector-valued gradient function μ which depends on the observed
transitions and on ω = (ω1, . . . , ωn)T. This function evaluates the contribution
of each ωi to some error measure (see details below).
• iterate the following two steps:

- update μ using new transitions
- modify ω in order to reduce μ, and re-evaluate μ.

This paper is organized as follows: Section 2 discusses the two currently used
gradient functions and their meaning. Section 3 presents the TD algorithms –
TD(λ) [1] and residual-gradient TD [2] – in that framework. Section 4 shows
that LSTD(λ) [3] and LSPE(λ) [4] and their Bellman-residual versions share the
same kind of derivation. Section 5 discusses a third family of algorithms that use
an intermediate update scheme (full gradient). It includes iLSTD [5, 6] and two
algorithms introduced in this paper: Full-TD and Equi-gradient descent TD.
Section 6 presents experiments made on the Boyan chain MDP, which illustrate
some of the benefits and drawbacks of each method. Complete proofs of the
equivalences of these formulations with the original ones and derivation of the
equi-gradient descent algorithm are exposed in [7, 8].

2 Fixed-point gradient vs. Bellman-residual gradient

The TD(0) algorithm estimates vπ iteratively by using its current estimate v̂ to
approximate the right hand side of the Bellman equations:

v(st) = rt + γv(st+1) ⇒ v(st) � rt + γv̂(st+1)
⇒ v(st)− v̂(st) � rt − v̂(st) + γv̂(st+1)

and consequently updating v̂(st)← v̂(st) + α (rt − v̂(st) + γv̂(st+1))
TD(λ) averages such approximations of v(st) on all “dynamic programming

ranks”. It can be seen as expanding the system to all implicit equations:⎧⎨
⎩

v(s0) = r0+γv(s1) = r0+γ(r1+γv(s2)) = . . . = r0+γ(r1+γ(r2+ . . . +γv(sT)))
v(s1) = r1+γv(s2) = . . .
. . .

and again replacing v by v̂ in the right hand sides. The different estimations
of v(st) are averaged using coefficients determined by a value λ ∈ [0, 1], which
leads to estimating v(st)− v̂(st) by

∑n−1
τ=t (λγ)τ−t(rτ − v̂(sτ) + γv̂(sτ+1)). This

error signal is again used to update v̂(st). As far as we consider v̂ to be a linear
combination of basis functions, the vector of error signals on v̂(s0), . . . , v̂(sT−1)

290

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

can be written as L(r−BΦω) =⎛
⎜⎝

1 λγ (λγ)2 . . .
1 λγ . . .

0
. . .

⎞
⎟⎠
⎡
⎢⎣
⎛
⎜⎝

r0

...
rT−1

⎞
⎟⎠−

⎛
⎜⎝

1 −γ 0
1 −γ

0
. . .

⎞
⎟⎠
⎛
⎜⎝

φ1(s0) . . . φm(s0)
...

...
φ1(sT) . . . φm(sT)

⎞
⎟⎠
⎛
⎜⎝

ω1

...
ωm

⎞
⎟⎠
⎤
⎥⎦

Let us note v = (v(s0), . . . , v(sT−1))T and v̂ = (v̂(s0), . . . , v̂(sT−1))T. Con-
sidering L(r − BΦω) as a good estimate of v − v̂ = v − Φω, one can mini-
mize 1

2‖v − v̂‖2 by minimizing the gradient ∇ω(v − v̂) (v − v̂) estimated by
−ΦTL(r−BΦω) (only v− v̂ is replaced by its approximation, not its gradient).
This gives what one may call a “fixed-point gradient”.

Another way of doing is to aim at solving the Bellman system, ie. minimize
1
2‖r−BΦω‖2 w.r.t. ω. This gives the Bellman-residual gradient
∇ω(r−BΦω) (r−BΦω) = −ΦTBT(r −BΦω).

The conceptual difference is simple: the fixed-point gradient transforms the
errors on transitions (temporal differences) into estimated errors on v̂ itself (ie.
errors on single states) by a multi-rank dynamic programming scheme, and
then projects these estimated errors on the parameter ω, whereas the Bellman-
residual gradient performs a direct projection.

We will consider these gradients (μ) on all observed transitions (including
several trajectories), by adequately expanding all vectors and matrices. The
iterative computation of these gradients proceeds according to the following way:
the components of the vector r − BΦω are the successive temporal differences
dt = rt − v̂(st) + γv̂(st+1); the columns of ΦTL (resp. ΦTBT) are referred to
as the eligibility traces zt. Each new sampled transition modifies the gradient μ
by μt ← μt−1 + dtzt, zt itself being computed iteratively.

These gradients, as well as v̂, are linear in ω: μ = Aω − b, with b = ΦTLr,
and A = ΦTLBΦ (resp. ΦTBTBΦ).

In the following where ways of modifying ω given the value of μ are discussed,
let us note δω the additive term of any modification: ω ← ω + δω.

3 TD algorithms

In its purely iterative form, TD(λ) [1] performs the following update after each
transition: ω ← ω + αdtzt. Equivalently, the updates can be performed only
after each trajectory, which is more consistent with its definition. Depending
on one’s view (related to the backward/forward views discussed in [1]), the first
scheme can be considered as the natural one and the second as accumulating
successive updates before committting it at the end, or the second one can be
seen as more natural (given the explanation in the previous section) and the first
one as a partial update given the partial computation of μ. Note that here, μ
only concerns the current trajectory: the updates performed in TD(λ) only take
into account the last trajectory.

Let us take a neutral point of view and state that the algorithm considers
the gradient on the current trajectory and updates weights at any chosen time

291

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

(but necessarily including the end of the trajectory) by ω ← ω + αμ followed
by μ ← 0: μ is computed iteratively, and each time a partial computation has
been used, it is “thrown away”. At the end of each trajectory, the associated
gradient has been used for one update ω ← ω + αμ and is then forgotten.

The residual-gradient TD algorithm [2] is actually the same algorithm, only
using the Bellman-residual gradient.

4 LSTD algorithms

When v̂ is approximated by alinear combination of features, it has been shown
in [9] that ω converges in TD(λ) to ω∗ such that μ(ω∗) = Aω∗ − b = 0. This
leads to the LSTD(λ) algorithm [3] which, given sampled trajectories, directly
computes ω∗ = A−1b.

For various motivations like numerical stability, or the use of optimistic pol-
icy iteration, or the possible singularity of A, or a smooth processing time, or
getting a specific point of view on the algorithm, the computation can be per-
formed iteratively. The algorithm can then be described as follows:
• for each new transition, update μ as exposed in section 2, and update A−1

(using Shermann-Morrison formula),
• whenever wanted, reduce μ by updating ω ← ω+A−1μ. ω is then the exact
solution of μ(samples so far, ω) = 0 and μ is updated to 0.
Again, the same algorithm can be applied using the Bellman-residual gradient.

In [4] is introduced a similar algorithm, namely Least Squares Policy Eval-

uation. The difference resides in the update ω ← ω +
(
ΦTΦ

)−1

μ, and the
consequent update μ← μ−Aδω.

5 Full-gradient algorithms

Three algorithms are presented in this section that all rely on the same idea:
reduce μ (again at any time) in a gradient descent way, but maintain its “real”
value: instead of zeroing it after each update3, the residual of the gradient is
kept. Then, the next updates not only perform one gradient descent step using
the current trajectory, but also continue this process for the previous ones.

The first natural algorithm is introduced here as Full-gradient TD and con-
sists in replacing μ← 0 by μ← μ−Aδω in the TD algorithm.

The iLSTD algorithm was introduced in [5, 6] (as well as the notation μ).
Although it is presented as a variation of LSTD (hence its name), it is more
closely related to gradient descent than to the exact least-squares solving scheme.
With the “any-time update” generalization used throughout this article, it can
be described as a full-gradient TD in which ω is updated only on its most
correlated component: ωi ← ωi + αμi, with i = arg max |μi|.

3which corresponds to forget each trajectory after only one gradient descent step on its
contribution to the overall gradient μ

292

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

Finally, the equi-gradient descent (EGD) TD, introduced here, consists in
taking EGD [8] steps as an update scheme. In a few words, EGD also consists in
modifying only the most correlated parameter ωi, but α is chosen so that after
this update, another parameter ωj becomes equi-correlated. The next update is(

ωi

ωj

)
←
(

ωi

ωj

)
+ α2

(
Aii Aij

Aji Ajj

)−1(
μi

μj

)
, and so on. The constraint

is that to allow the exact computations of the step lengths, μ must not be
modified (by new samples) in between those steps. So a typical update schedule
is to perform a certain number of steps at the end of each trajectory, preferably
to one or a few steps after each transition.

The benefit exposed in the first paragraph comes at the cost of maintaining
the matrix A, which has the same order of complexity as maintaining A−1 in
LSTD, but is still about half less complex. However, as exposed in [5], if the
features are sparse, the complexity of the two last algorithms can be lowered,
unlike in LSTD.

EGD TD presents the crucial benefit of not having to tune the α update
parameter of gradient descent schemes. Instead of setting the lengths of descent
steps beforehand and uniformly, and cross-validate them, they are computed on
the fly given the data.

6 Experiments

Experiments were run on a 100 states Boyan chain MDP [3]. Details are exposed
in [7]. The fixed-point gradient was used, with λ = 0.5.

• In fig. 1, the RMSE is plotted against the number of trajectories to
illustrate the differences between full exploitation of the samples (least-
squares and full-gradient methods) and TD,
• In fig. 2, the RMSE is plotted against the computational time: the
three families are clearly clustered. Note that the sparsity of the features
has not been taken into account, and EGD TD and iLSTD can perform
much better on that point, as experimented in [5] for the latter.

 0.1

 1

 10

 100

 0 200 400 600 800 1000

rm
se

trajectory #

LSTD

Full-gradient’s and LSPE

TD

LSTD
EGDTD

FGTD
iLSTD
LSPE

TD

Fig. 1: Root mean squared error against the number of trajectories

293

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7 8 9

rm
se

time (in seconds)

TD (10 000 traj.)

Full-gradient’s (1000 traj.)
LSTD, LSPE (1000 traj.)

TD
EGDTD

FGTD
iLSTD
LSPE
LSTD

Fig. 2: Root mean squared error against the computational time

7 Summary and perspectives

Classical algorithms of reinforcement learning have been presented here in a view
both practical and enlightening. This view allows a natural introduction of a
new intermediate family of algorithms that performs stochastic reduction of the
errors, as in TD, yet makes full use of the samples, as in LSTD. Let alone the
time and sample complexities, these methods open interesting perspectives in the
frame of optimistic policy iteration. Indeed, the principle of neither forgetting
samples after a small update, nor directly fully taking them into account, may
allow to make a better use of samples than TD while avoiding the issue met by
LSTD: making too much case of samples coming from previous policies. This can
be achieved by scaling μ by a discount factor after each trajectory (for example),
which amounts to reducing only a given ratio of it.

References

[1] R.S. Sutton and A.G. Barto. Reinforcement learning: an introduction. MIT Press, 1998.

[2] Leemon C. Baird III. Residual algorithms: Reinforcement learning with function approxi-
mation. In International Conference on Machine Learning, pages 30–37, 1995.

[3] J. Boyan. Least-squares temporal difference learning. In Proc. 16th International Confer-
ence on Machine Learning, pages 49–56. Morgan Kaufmann, San Francisco, CA, 1999.

[4] A. Nediç and D. P. Bertsekas. Least squares policy evaluation algorithms with linear
function approximation. Discrete Event Dynamic Systems, 13(1-2):79–110, 2003.

[5] A. Geramifard, M. Bowling, and R. Sutton. Incremental least-squares temporal difference
learning. In Proceeding of AAAI, pages 356–361, 2006.

[6] A. Geramifard, M. Bowling, M. Zinkevich, and R. Sutton. iLSTD: Eligibility traces &
convergence analysis. In Proceeding of NIPS, 2006 to appear.

[7] M. Loth. A unified view of td algorithms – introducing full-gradient td and equi-gradient
descent td. Technical report, INRIA-Futurs, 2006, to appear.

[8] M. Loth. Equi-gradient descent. Technical report, INRIA-Futurs, 2006, to appear.

[9] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Trans. on Automatic Control, 42(5):674–690, May 1997.

294

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

