
Intrinsic plasticity for reservoir learning

algorithms

Marion Wardermann1 and Jochen Steil1

1- University of Bielefeld - Faculty of Technology
Universitaetsstrasse 25, 33615 Bielefeld - Germany

Abstract. One of the most difficult problems in using dynamic reservoirs
like echo state networks for signal processing is the choice of reservoir net-
work parameters like connectivity or spectral radius of the weight matrix.
In this article, we investigate the properties of an unsupervised intrinsic
plasticity rule for signal specific adaptive shaping of the reservoir, which
is local in space and time and aims at maximizing input–to–output infor-
mation transmission for each neuron. We show that the rule consistently
regulates the neurons’ mean outputs and variances and is robust to learn-
ing parameter changes. Simulations reveals that this reservoir adaptation
robustly enhances online learning of Backpropagation–Decorrelation recur-
rent learning for a tenth–order nonlinear NARMA benchmark problem.

1 Introduction

Reservoir Learning Algorithms (RLA) are a class of very fast learning algorithms
for recurrent neural networks (see e.g. [1]). They use the recurrent network
as a dynamical reservoir for temporal encoding of the input and adapt only a
set of output weights by supervised learning to implement a readout function,
which combines the activities of the nodes in the network to the desired outputs.
Therefore the learning complexity of online RLAs can be reduced to linearity in
the number of nodes, like in Backpropagation-Decorrelation (BPDC, [2]). Due
to its ability to adapt very fast to changes in the reservoir behaviour only BPDC
as sample RLA will be investigated in this paper.

A problem of RLAs is that the reservoir weights have to be carefully set.
Firstly the network’s states must depend only on a limited number of past time
steps, i.e. they have to exhibit the “Echo State Property” (ESP, see e.g. [3]).
Secondly the desired output function has to be in the functional space spanned by
the vectors of activities of the neurons in the reservoir over time. The common
way to increase the probability of success is simply increasing the functional
space spanned by the states by enlarging the reservoir or scaling the weights.

Nevertheless, in large recurrent biological neural networks — like the brain
— it seems to be possible to maintain the ESP while being able to generate
generic outputs. Recently, a biologically motivated unsupervised learning rule
has been developed ([4]), here called intrinsic plasticity (IP), which is able to
locally steer a neuron’s output distribution and thereby to some degree also more
directly the network properties than by setting just global weight scaling. Its
time needed during one time-step for adaptation grows linearly with the number
of nodes, therefore it does not slow down BPDC. This paper derives theoretical

513

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

properties of IP learning and investigates in which way and with what parameters
IP is capable of improving the reservoir such that an RLA’s learning ability is
increased. Two different trains of experiments will be presented: One will show
the growth of the space spanned by the states of the neurons in the network and
that the network still exhibits the ESP after adapting with IP. During the second
train IP will be applied with an RLA on a classical benchmarking problem, the
NARMA tenth order system.

2 Derivation of Intrinsic plasticity

IP adapts the neurons based on three principles: firstly information maximiza-
tion, i.e. the output of the neuron should contain as much information on the
input as possible. Secondly, as the energy available is limited, each neuron has
to keep its average output at a certain level. The third idea is to adapt not the
weights, but the intrinsic properties of the neurons, which is a common behavior
in biology (see [5], [6]). Following these ideas Triesch ([4]) developed a learning
rule for analog neurons which transfer their input x into the output y by using
a generalized Fermi function ga,b(.) with two parameters controlling gain a and
bias b, i.e. y = ga,b(x) = (1 + exp(−(ax+ b)))−1. The exponential output func-
tion has got the maximum entropy for a given average, therefore a and b are
adapted to minimize the Kullback–Leibler distance DKL(fy; fexp) between the
output distribution fy and the desired exponential one fexp with mean µ. The
adaptation of a and b is performed by stochastic gradient descent updates for
each time–step as

∆b = ηIP (1 − (2 + 1

µ
)y + 1

µ
y2),

∆a = ηIP (1

a
+ x− (2 + 1

µ
)xy + 1

µ
xy2) = (η

a
+ x∆b),

(1)

where ηIP is a learning rate. For a detailed derivation see [4].
Note that the targeted exponential distribution is infinite, but a Fermi func-

tion is limited to]0, 1[, thus fy has to differ from the desired exponential one
fexp. The optimal output distribution ff minimizing the Kulback–Leibler dis-
tance to fexp is the one having the same shape in [0,1] as fexp. Thus we computed
the actual average value µf and the actual standard deviation σf of ff . The
infinite exponential probability density function p(y) = λ exp(−λy), λ = 1/µ
must be normalized to result in a distribution in the limits]0:1[. Thus the finite
distribution density function is

pf (y) =
p(y)

∫

1

0
p(ψ)dψ

=
λ exp(−λy)

1 − exp−λ
. (2)

Substituting equation 2 into µf =
∫

1

0
ypf (y)dy results in

µf = −
λ+ 1 − exp(λ)

(exp(λ) − 1)λ
. (3)

514

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Desired mean level

a
v
e
ra

g
e

Average of activity of
nodes in networks with

Expected average

{
10
 1
 0.1

µF

σw

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Desired mean level

st
d

a
n

d
a
rd

 d
e
v

ia
ti

o
n

Stddev. of activity of
nodes in networks with

Expected stddev

{
10
 1
 0.1

σF

σw

Fig. 1: Approximation quality of the output distributions. Shown are compar-
isons between ideally adapted output distribution (finite exponential distribu-
tion) and those measured in neurons in networks with 50 nodes.

Calculated in the same way, the standard deviation of the finite distribution has
a value of

σf =

√

−2e−2λ + 4e−λ + e−2λλ2 − e−λλ2 − e−2λλ− 2 + e−2λλ3 + λ

λ(e−λ − 1)2
(4)

The bold lines in figure 1 show µf and σf in relation to µ together with
experimental data described in more detail below.

3 Impact of IP on an RNN

During the remainder of the article, we consider the recurrent network dynamics

x(k + 1) = Wresga,b(x(k)) + Wuu(k), (5)

where xi, i = 1, . . . , N are the neural activations, ga,b(.) ∈ N
N

→ N
N is the

generalized Fermi function with parameters a = a1 · · · aN and b = b1 · · · bN for
each neuron, Wres ∈N

N×N the weight matrix, Wu ∈N
N×NI the weight matrix

connecting the NI inputs with the network, and k is the time step. During
each time step the inputs are the present and NI −1 past values of the given
data set, the output is the activation of x1. The network is fully connected and
the weights are set by drawing from a gaussian random distribution with 0 as
mean and, if not mentioned otherwise, 0.1 as standard deviation. Training one
network on one dataset is called a “session”.

The first question is to what degree IP manages to approximate an exponen-
tial output distribution in an RNN. Triesch ([4]) has already demonstrated that
IP is able to find a transfer function as good as possible for a given input distri-
bution in a non–recurrent single neuron. Note that the shape of this function is
constricted, therefore the output distribution is not always exactly exponential.
In an RNN, additionally the recurrency could pose a problem. Therefore we
investigated the behaviour of the neurons in different RNN settings and input
sizes.

515

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

The inputs were constructed by randomly drawing from gaussian distribu-
tions with means of 0, 1 and 10 and standard deviations of 0.1, 1 and 10, which
is a total of 9 different time series. For studying the impact of different types
of network behaviour, the weights were initialized once in a region of provable
stability, once beyond the edge of provable stability, and once far into the chaotic
regime. Using the Contraction Mapping Theorem ([7]), the region of provable
stability — where the ESP exists — is there, where the maximal eigenvalue of
the weight matrix scaled by the maximal derivatives of the transfer functions
is smaller than 1. As the fermi function has a maximum gain of 1

4
, this means

that the network will be stable for weight matrices with a maximal eigenvalue
smaller or equal to 4. The weight matrices were set to exhibit a spectral radius
of 1, 10 and 100, i.e. the standard deviation of the weights were 0.1, 1 and 10
(see figure 1). ηIP was set to 0.001. The desired mean levels investigated were
0.1, 0.2, 0.4, 0.8 and 1. Alltogether thus 135 training sessions were conducted.
Each training session consisted out of 100,000 training steps, where the network
was adapted with ηIP = 0.001, and 1000 test steps without adaptation, during
which the average and standard deviation of the nodes are calculated.

Mean and standard deviation are close to the expected ones for networks not
in the chaotic regime, as expected.

Chaotic behaviour of a network — which means losing the ESP — would also
make learning for an RLA impossible. Non–chaotic behaviour of the network
can only be guaranteed for a spectral radius of the weight matrix being smaller
or equal than 4. But if applying the gains altered under the IP learning rule on
the weight matrix instead of the activation function and calculating the resulting
spectral radius, this can grow beyond the regions of provable stability.

Even if, though there is no proof that IP maintains the ESP, we observe
it always. For example, for each of the weight matrices mentioned above and
input following the equation y = sin(0.2t) + sin(0.311t), the network has been
trained over 100000 steps by IP with ηIP = 0.001 and µ = 0.3. Running
the network twice for 10000 steps with different state initializations but the
same inputs and network parameters, after 1000 discarded steps, the difference
between these two runs is always smaller than 10−27. The difference is here
defined as the normalized mean square error (NMSQE). It follows that the ESP
is still maintained after adaptation by IP.

4 Application of IP and RLA on the Tenth–Order NARMA

problem

Now that the two prerequesites for the possibility of improved learning with an
RLA have been shown, the improvement in RLA learning will be demonstrated
here by a popular benchmarking problem. The benchmark used is a tenth order
NARMA system ([8]). This is a dynamical system driven with random inputs u

and computed by y(k+1) = 0.3y(k)+0.05y(k)[
∑

9

i=0
y(k−i)]+1.5u(k−9)u(k)+

0.1, where y denotes the output of the network. The task is predicting y(k+ 1),
while u(k) and u(k− 9) are presented as input. The tenth–order problem seems

516

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

ηIP ηRLA εtrain εtest
0 0.01 0.200331 0.224519

0 0.1 0.13723 0.162927

0.0001 0.01 0.1033 0.1103

0.0001 0.1 0.1010 0.1132

0.0001 0.3 0.1103 0.1651

0.001 0.01 0.1243 0.1129

0.001 0.1 0.1114 0.1192

0.001 0.3 0.1129 0.1435

0.01 0.01 0.1484 0.1298

0.01 0.1 0.1262 0.1305

(a)

0. 0 5

0. 1

0. 1 5

0
0. 1 0. 2 0. 3 0. 4 0. 5 0. 6

0. 2 0
std of
errors}

#nodes= 200, εtrain
#nodes= 200, εtest
#nodes= 100, εtrain
#nodes= 100, εtest

Desired mean level

N
M

S
Q

E

(b)

Fig. 2: Errors for different parameter settings:
2(a): Optimizing ηRLA and ηIP , parameters held fixed are µ at 0.3
and the number of nodes at 100
2(b): Optimizing µ and node number with ηRLA = 0.01 and
ηIP = 0.0001

to be well–suited for learning with IP as the input’s short–time statistics do not
change over time and the input distribution is furthermore gaussian, which is the
optimal shape for producing exponential output distributions by a generalized
fermi–function.

Training parameters for BPDC are the learning constant, ηRLA, and a regu-
larization constant, which is set to 0.001. Before each training session the dataset
is split up into 700 points for training and 500 for testing. Then the network
is trained for several epochs, which begins each with initialization of the states
randomly uniformly distributed in an interval of [0,1]. The first points of the
training set are used for relaxation of the network without adaptation, the rest
for adapting with IP. Finally, after each epoch the generalization ability of the
network is tested with the datapoints from the test set, without adaptation.
After each epoch of a training session, the error is calculated for the training
as well as the test data set as NMSQE between the network output and the
targeted one. We summarize performance for one training session by the mini-
mal NMSQE with respect to all the epochs of one training session. Afterwards,
we average the minimal errors over three sessions with different weight matrices
but otherwise the same parameters. The result is denoted by εtrain or εtest,
respectively.

The best result for learning only with BPDC was obtained with ηRLA = 0.1,
i.e. εtrain = 0.13723 and εtest = 0.162927. As can be seen in figure 2 , adapting
with IP leads to better results, the smallest εtrain is 0.101 for ηIP = 0.0001,
ηRLA = 0.1, µ = 0.3 andN = 100, the smallest εtest 0.1103, but for ηRLA = 0.01.
Another asset of IP is that the error when learning with IP is smaller than
learning without from almost the first epoch on. Furthermore, in contrast to
simple BPDC, the test error increase due to overfitting starts much later, if at
all.

Often using additional learning techniques comes with the cost of additionally
parameters which have to be fine–tuned. But setting parameters for IP is not
difficult, as the results for all µ > 0.2 are almost the same and ηIP just has to
be set such that 100ηIP < ηRLA. Furthermore, choosing parameters for BPDC

517

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

is easier, since it matters only little whether ηRLA = 0.1 or ηRLA = 0.01, and
the network size is also not important.

The results show that using IP firstly improves learning with BPDC and
secondly is more robust, because its performance depends neither on fine tuning
the network size, the IP learning rate, the BPDC learning rate nor the desired
mean level.

5 Conclusion

We have shown that IP learning is capable of driving the neurons in larger
networks to the theoretically derived renormalized mean and variance of the
desired exponential output distributions. We also showed at hand of the tenth
order benchmark that the learning performance of RLAs can be improved con-
siderably. Further experiments not documented here have shown that this is also
the case for other standard problems and we have not experienced cases where
IP learning decreases performance. The most encouraging result, however, is the
enormous robustness against both varying weight and learning parameters. The
reason is probably that IP controls reliably the size of the neurons’ activity space
(see section 3). We believe that this regulatory effect of IP learning largely facil-
itates to generate reservoirs with controlled performance fitting a given problem
and should be included as standard approach at least in online-learning settings.

References

[1] David Verstraeten, Benjamin Schrauwen, Michiel D‘Haene, and Dirk Stroobandt. The uni-
fied reservoir computing concept and its digital hardware implementations. In Proceedings
of the 2006 EPFL LATSIS Symposium, pages 139–140, Lausanne, 3 2006.

[2] Jochen J. Steil. Backpropagation-decorrelation: Recurrent learning with o(n) complexity.
In Proc. IJCNN, pages 843–848, 2004.

[3] Herbert Jäger. Reservoir riddles: Suggestions for echo state network research. In Proceed-
ings of International Joint Conference on Neural Networks, Montreal, 2005.

[4] Jochen Triesch. A gradient rule for the plasticity of a neuron’s intrinsic excitability. In
Proc. of the Int. Conf. on Artificial Neural Networks (ICANN), 2005.

[5] Wei Zhang and David J. Linden. The other side of the engram: Experience-driven changes
in neuronal intrinsic excitability. Nature Reviews Neuroscience, 4:885–900, 2003.

[6] Alain Destexhe and Eve Marder. Plasticity in single neuron and circuit computations.
Nature, 431:789–795, 2004.

[7] B. Cessac. Increase in complexity in random neural networks. Journal Physique I France,
5:409–432, 1995.

[8] A. Atiya and A.G. Parlos. New results on recurrent network training: unifying the algo-
rithmsand accelerating convergence. IEEE Trans. Neural Networks, 11(3):697–709, 2000.

518

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

