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Abstract. Given an appropriate imaging resolution, a common Mag-
netic Resonance Imaging (MRI) model assumes that object under study
is composed of piecewise constant materials, so that MRI produces piece-
wise constant images. The intensity inhomogeneity (IIH) is modeled by a
multiplicative inhomogeneity field. It is due to the spatial inhomogeneity
in the excitatory Radio Frequency (RF) signal and other effects. It has
been acknowledged as a greater source of error for automatic segmenta-
tion algorithms than additive noise. We propose a new non parametric
IIH correction algorithm where the Self Organizing Map (SOM) is used to
estimate the IIH field.

1 Introduction

Magnetic Resonance Imaging (MRI) allows to visualize with great contrast the
soft tissues in the body and has revolutionized the capacity to diagnose the
pathologies that affect them [5]. MRI has a high spatial resolution and provides
much information on the anatomical structure, allowing quantitative patholog-
ical or clinical studies, the derivation of digitized anatomical atlases and also
the guide before and during the therapeutic intervention. Given an appropriate
imaging resolution, a common MRI model assumes that the object under study
is composed of piecewise constant materials, so that MRI would produce piece-
wise constant images. Under this model, once the expected intensities of each
tissue are known, we can obtain a good approximation to the optimal bayesian
classifier of minimum classification error, assuming that the intensity distribu-
tion is a mixture of gaussians whose means are the tissue expected intensities,
to perform the image segmentation task. However several imaging conditions
introduce an additional multiplicative noise factor: the intensity inhomogeneity
(IIH) field. This effect may come from inaccurate positioning of the patient
or inhomogeneities in the RF signal energy spatial distribution. Conventional
clustering algorithms [6] can cope with the additive noise, but the multiplica-
tive inhomogeneity field has catastrophic effects on their performance. A broad
taxonomy of MRI IIH correction algorithms divides them between parametric
and non-parametric algorithms. The first ones use a parametric model of the
IIH field [4, 10, 14]. The non parametric algorithms [1, 11, 13, 16] perform a
non-parametric estimation of the inhomogeneity field which is computed as the
smoothed restored image classification residuals. A general non parametric al-
gorithm for IIH correction is the lowpass filtering in the log-domain, which is
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equivalent to homomorphic filtering [8] in digital image processing for the cor-
rection of illumination inhomogeneity. However, it is of no use for MRI because
there is a great overlap between the IIH field and the image Fourier spectra. The
IIH correction algorithms in MRI are composed of two steps. One is a method
for the IIH field estimation and the other is a classification algorithm applied
to the image obtained removing the IIH field. In this paper the classification
step is performed by a simple minimum distance classifier to the assumed class
intensity means corresponding to the reference tissues. The field estimation is
performed applying a SOM adaptation rule. In this paper we do not deal with
the simultaneous estimation of the class intensity means and the IIH field.

Section 2 contains the definition of the algorithm. Section 3 contains some
experimental results, and section 4 contains some conclusions and further work
directions.

2 Description of the algorithms

We will denote y = (yi; i ∈ I) the observed image and c = (ci; i ∈ I, ci ∈ Ω) the
classification image, where i ∈ I ⊂ N2 is the pixel site in the discrete lattice of
the image support for 2D images, and Ω = {ω1, ..., ωc} is the set of tissue classes
in the image. The assumed image formation model is the following one

yi = βi · xi + ηi, (1)

where βi is the multiplicative inhomogeneity field, xi is the clean signal associ-
ated with the true pixel class ci and ηi is the additive noise. In MRI we have
the additional constraint that the signal intensity values belong to a discrete
(small) set, Γ = {µω1 , ...., µωc} , so that xi = µci . The IIH correction problem
is the problem of estimating the image segmentation c and the inhomogeneity
multiplicative field β = (βi; i ∈ I) from y. In some algorithms the correction
and estimation is performed on the image logarithm. If we discard the additive
noise term, we have that the model in equation (1) becomes:

log yi = log βi + log xi. (2)

The multiplicative field β becomes an additive term usually named bias field.
The distinction between the two image formation models is not as trivial as
may appear at first sight, because the log-model in equation (2) implies that the
additive noise term ηi has been taken care of previously by means of some linear
or non-linear filtering technique, i.e.: anysotropic filtering [7, 12], otherwise the
model does not apply. However, in [9] a strong case was made against previous
filtering of the image.

We assume the image formation model in eq. 1, and that the intensity class
means Γ = {µω1 , ...., µωc} are known, the problem of IIH estimation becomes
the following minimization problem:

min
βi

∑
i

(
yi

βi
− µc(i)

)2
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where c (i) = arg mink

{∥∥∥µk − yi

βi

∥∥∥}
. That is, we try to minimize the quanti-

zation error over the IIH corrected image. We have the additional constraint
that the estimated IIH field must be smooth. This smoothness constraint can
be expressed in several ways:

1. maxj∈N(i) ‖βi − βj‖ < ε. The IIH field value differences between a pixel
site and its neighbors are arbitrarily small.

2.
∑

j∈N(i) ‖βi − βj‖ < ε. The sum of the IIH field value differences between
a pixel site and its neighbors is arbitrarily small.

3. ∀i, j, k; |i− j| < |i− k| ⇒ ‖βi − βj‖ < ‖βi − βk‖ . There is a topological
preservation relation between the pixel site index space and the intensity
value space.

The last condition resembles the SOM topological preservation property. We
propose to use a SOM-like estimation procedure. The logarithm is monotonic
transformation, therefore the minimization problem in eq. 2 can be rewritten as
follows:

min
βi

∑
i

(
yi

βi
− µk(i)

)2

= min
βi

∑
i

(
log

(
yi

βi

)
− log µk(i)

)2

=

= min
βi

∑
i

(
log yi − log βi − log µk(i)

)2

If we consider a gradient descent rule for the minimization of this error func-
tion when the pixel components of the IIH field are assumed independent, we
obtain the following rule:

4 log βi = −2α
(
log yi − log βi − log µk(i)

)
where 0 < α < 1 as usual. If we take into account the smoothness constraint
as formulated in condition 3 above, then we can propose the following gradient
descent rule as an approximation to minimizing the error in eq. 2 with the
constraint of a smooth IIH field:

4 log βj = −2αj

(
log yi − log βi − log µk(i)

)
; j ∈ N (i)

Like in the SOM, the neighboring pixels are updated along with the selected
pixel. The algorithm is a stochastic gradient descent in which the rule of eq.
2 is applied to a randomly selected pixel i. The gain parameters αj can be
constant for all the neighboring pixels, but a better approach is to make them
Gaussian shaped. An annealing process, shrinking the neighborhood radius as
the estimation proceeds.

It must be clearly stated that our approach follows a path that differs from
other previous applications of SOM to MRI segmentation, like [2, 15]. There,

111

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



the SOM is used to estimate the intensity class means, either in multispectral or
single modality images. In these works, the existence of IIH fields is not taken
into account. Most of these papers report an overestimation of the number of
classes in the image. This is a natural effect when the IIH field is not considered.
On the other hand, in this work we assume the intensity class means provided,
focusing on the estimation of the IIH field.

3 Experimental results

In this section we present the experimental results of a new non parametric IIH
correction algorithm based on the Self Organizing Map (SOM). We have com-
pared the IIH correction capacity between the proposed algorithm and the state
of the art Wells algorithm [16]. The experimental data is composed of 84 slices
of simulated brain images, divided into three main groups of 28 consecutive
slices that correspond to sagittal, coronal and axial slices respectively. These
images are IIH corrupted versions of a clean volume which has been downloaded
from the BrainWeb site [3] at the McConnell Brain Imaging Centre of the Mon-
treal Neurological Institute, McGill University. The IIH fields were randomly
generated linear combinations of 2D Legendre polynomials.

Figure 1 plots the correlation between the IIH correction results of both al-
gorithms. We can observe that greatest correlation between the Wells algorithm
and our algorithm correspond to the coronal slices (images #29 to #56), whereas
the lowest ones occur in the sagittal slices. Overall the correlation between the
results of both algorithms is greater than 0.9 for the images tested, that means
that our approach compares well with state of the art algorithms. Figure 2 (a)
shows one coronal slice of a clean simulated volume. Figures 2 (b), 3 (a), 3 (b)
show the result of applying the Canny Edge Detection algorithm over the clean
slice, the corrected slice using the proposed algorithm and the corrected slice
using the Wells algorithm respectively.

4 Conclusions

We have proposed an algorithm for IIH field estimation in MRI. Our algorithm
is based on a topological preservation formulation of the smoothness constraint
on the IIH field. The resulting estimation rule is very similar to SOM rule, where
the neural units are all the pixels of the image. We have tested the approach
over MRI simulated images and we have compared its IIH correction capacity
with a state of the art algorithm, obtaining encouraging results. Our algorithm
obtains results comparable to the Wells algorithm, with a substantial reduction
in time. Further work will be addressed to experiment with real brain images
and volumes to study the fine detail of the convergence of the algorithm.
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Fig. 1: Correlation between proposed algorithm and Wells Algorithm.

Fig. 2: (a) A slice of clean simulated volume , (b) corresponding edge detection.

Fig. 3: Edge detection over the slice corrected by our algorithm (a) and the
corrected by Wells Algorithm (b).
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