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Abstract. Recent papers by D. Chklovskii and E.M. Izhikevich suggest

that wiring costs may play a significant role in the physical layout and func-

tion of neuronal structures. About eighty years ago, in his paper on the

relationship between diameter and branching angles in trees, C.D. Murray

proposed the volume as the cost function which dictates growth. O. Shefi

et al. grafted this idea into neuroscience as a possible optimisation mech-

anism. Our paper presents computational experiments on the impact of

wiring cost functions proposed by D. Chklovskii and O. Shefi et al. when

applied to interneuronal connections in small ML neuronal networks.

1 Introduction

The simulation of networks of spiking neurons is a one of the major topics in
neuroscience. A recent overview and rigorous evaluation of different models of
spiking neurons can be found in [7]. E.M. Izhikevich discusses twenty of the most
prominent features of biological spiking neurons (tonic spiking, phasic spiking,
threshold variability, etc.) against the expressiveness of eleven models of spik-
ing neurons, including an assessment of the “biological plausibility” of neuron
models. The author highlights three models as particularly suited for simula-
tions of networks of spiking neurons, where the high degree of approximation
of biophysical properties plays an important role. The three models are the
Hodgkin-Huxley model, the Morris-Lecar model, and a new model developed
by the author himself. Due to the high accuracy of the Hodgkin-Huxley model
(four defining equations with tens of parameters), the model is computation-
ally expensive and allows the simulation of small networks only with currently
available hardware. This is why, at the moment, the Morris-Lecar model (two
defining equations and a moderate number of parameters) is very popular in the
computational neuroscience community.

As pointed out in [8], in most of the research on networks of spiking neurons
synchrony of firing is emphasized, i.e. if two or more neurons have a common
post-synaptic target and fire synchronously, then their spikes arrive at the tar-
get at the same time, thereby evoking potent post-synaptic responses. This
implies an implicit assumption that the axonal conduction delays are negligible
or equal. E.M. Izhikevich [8] (see also [9]) investigates the effect of signal delays
and pre-synaptic (asynchronous) firing sequences on post-synaptic responses,
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i.e. different (initial) pre-synaptic firing sequences result in the activation of dif-
ferent subsets of neurons. The underlying approximation of neuronal activity
is the model introduced in [7], which comprises of three variables and four pa-
rameters. To distinguish the effect from random asynchronous firing, the notion
of “polychronization” is introduced, and subsets of activated neurons are called
“polychronous groups.” For constant, randomly chosen conduction delays, re-
sults from simulations of a 103 neuronal network are presented and discussed in
[8]. Polychronous groups are identified from their topological relation and firing
activity in simulations after convergence of the network. The author identifies
5,269 different polychronous groups in the network of 103 neurons, which sug-
gests an unprecedented memory capacity of such systems. A natural extension
of this work is to investigate specific cost functions assiciated with conduction
delays, instead of constant, randomly chosen values. The present paper presents
preliminary research into this direction. A future goal is to optimize the 2D and
3D placement of neurons in such a way that the number of polychronous groups
is maximized.

2 Modelling conduction delays

Various models have been proposed recently for numeric simulations of axonal
conduction delays; see [1, 2, 3, 4, 13] and the literature therein. We intend to
employ the connection cost function as proposed in [2, 3, 4] and in [13], since
the authors provide a justification of their model that is based on experimental
evidence in the context of the Optimal Neuronal Layout Problem.

2.1 The Chklovskii delay function

A common assumption is that wiring costs are related to the wiring volume.
However, in his paper [4], D. Chklovskii attempts to tackle the problem of wiring
costs in neuronal networks by proposing a cost function that is determined by
the square of the wire length. A volume cost function would result in axons
tending to be extremely thin. Although this may decrease energy and other
requirements, it would certainly hinder the propagation of signals. These con-
flicting requirements tend to suggest some optimum combination that must be
factored in any plausible solution.

The Chklovskii model is motivated by a comparison of results from neuronal
layout calculations to the arrangements in the macaque pre-frontal cortex and
the Caenorhabditis elegans, in the latter case for 279 neurons [2, 3]. The exper-
imental analysis suggests that wiring costs are indeed proportional to the “wire
volume” for a fixed diameter, and the costs grow linearly with the wire length.
Furthermore, the wiring cost is a function of the propagation delay T = L/k · d,
where L is the length of the connection and k · d is the signal speed for the
diameter d; k = const. This implies the approximation

Cost = α ·
π

4
· d2

· L + β ·

( L

k · d

)γ

, (1)
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where α, β, γ = const. If the cost function is minimized with respect to the
diameter, i.e. ∂Cost/∂d = 0, one obtains Cost � L3·γ/(γ+2), which means Cost �
L for γ = 1 and Cost � L3 as γ → ∞. As a compromise, Cost � L2 is assumed
in [4]. One of the main objectives of the present paper is to analyse whether
this assumption is justified, where the basic parameter is the intensity of spiking
activities of neurons in the Morris-Lecar model.

2.2 The Shefi et al. delay function

In [13], Shefi et al. propose an alternative approach to the optimal layout problem
and the laws that dictate the formation of neural structures, drawing on the
earlier works of C.D. Murray [11, 12]. Murray’s papers originally dealt with
volumes and the relationship between the diameters of a given pair of sub-
branches of a blood vessel or tree. This relationship basically stated that the
optimal diameters of the bifurcating branches depended on the diameter of the
parent branch or blood vessel and the angle between them, given by the following
equations:

cos(α1) =
d4
0+d4
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, (2)

where d0 is the parent neurite diameter, d1 and d2 being the child neurite di-
ameters, and α1 and α2 are the angles between the central axis of the parent
neurite and their respective child neurites.

Complimentary to the diameter and angles relationship, Shefi et al. [13] con-
sidered the balance of tensions between the main neurite and the sub-neurites.
This ensures the optimal layout and diameters and is mathematically equiva-
lent to Murray’s equations. However, for the scope of this paper we shall limit
ourselves to (2). Both Murray’s and tension approaches were applied to data
from cultured networks of locust ganglia [13]. Although neither was conclusive,
results were overall satisfactory for both models [13].

For the axon delay experiments described in this paper, the total wiring cost
ϕ for each neurite shall be taken as the volume of the parent neurite up to the
bifurcation point added to that of the child neurite as suggested in [13]:

ϕ = π ·
(d2

0 · l0 + d2
1 · l1)

4
, (3)

where d0 and d1 respectively represent the parent and child neurite diameters
and l0 and l1 are the parent and child “wire” lengths.

3 The neuronal network

The networks devised for the experiments are based on the assumption that neu-
rons in nature tend to communicate largely through spike trains. The network
simulation time is divided into iterations, where during an iteration every neu-
ron can simulate the impact of the efferent spikes on its membrane and generate
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its own action potentials as a result. These new potentials are propagated at
the end of the current iteration but will only have effect in the next one. All
spikes are stored and processed in order of arrival at the neuron. This strategy,
although artificial, ensures that all spikes generated in the network will be pro-
cessed in a synchronised manner, which does not affect the study of the axon
delays.

The physical design for the Chklovskii experiment network is shown in Figure
1. The 24 ML-type neurons are linked in an arbitrary random manner. Conse-
quently, a spike generated by one particular neuron is transmitted to a few (1
to 2) other neurons. Although the amplitude for a give spike will be the same
for all, the arrival time will vary depending on the axon length.

A different approach is taken for the Shefi experiment where the neural con-
nections, as seen in Figure 2, follow a pattern dictated largely by the bifurcations
of the axons. In this case the axon delay is calculated by the total axon-neurite
volume.

Depending on the cost function applied, axon length or volume directly af-
fects the arrival of a pulse transmitted from one neuron to another.

Fig. 1: Layout and connectivity for
the Chklovskii experiments.

Fig. 2: A simplified network diagram
for Shefi et al. experiments.

4 Computational experiments

The simulation and integration of the ML equations is handled by the XPPAUT
program package. This freeware, written by G.B. Ermentrout [5], is a graphical
tool that we utilized for solving the ML’s differential equations, thus allowing
each neuron to change its state in accordance with the input spikes it receives,
see also [6, 10]. The following parameters are common to all ML neurons:

vk=-84mV; l=-60mV; vca=120mV; gk=8; gl=2; gca=4;
c=20µF; v1=-1.2mV (M∞ = 0.5); v2=18mV;
v3=12mV (N∞ = 0.5 mV); v4=17.4mV; φ=.23; i=30µA.
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In each experiment, we executed 14 iterations with each iteration simulating
400ms, i.e. the total simulation time of a single experiment was 5,600ms. The
settings were the results of preliminary experiments with the XPAUT program
package.

4.1 Chklovskii wiring cost results

As mentioned in Section 2.1, the main concern was to analyse the impact of the
power γ in (1) on the spiking activity. Six separate experiments were conducted
on the same network of 24 Morris-Lecar neurons for the Chklovskii wiring cost
accoding to Cost � L3·γ/(γ+2) = Lp and variable p (actually, γ). The settings
for p were p = 0.0 (no wiring cost), 1.0, 1.5, 2.0, 2.5 and 3.0.

Figure 3: Average number of spikes produced by the same network.

Each set of 6 experiments was conducted with 4 different initial spike sets.
The sets consist of mixed patterns of repeated 3, 2, or single spikes.

Fig. 3 shows the average over 4 different input spike sets for each of the six
values for the power p in Cost � Lp. We note that by far the largest values are
obtained for 1.5 ≤ p ≤ 2.5.

4.2 Shefi et al Wiring Cost Results

Two simulations were conducted to demonstrate the impact of the Shefi et
al. cost function: one simulation with cost function ϕ from (3), and one with
conductance delay equal to zero. The same 4 sets of initial spikes were used as
in the Chklovskii simulations. Fig. 4 shows the significant difference between
the two cases.

Furthermore, we note that for different topologies, but the same number
of ML neurons and the same simulation time, the average number of spikes
produced within the 14 iterations of equal length is approximately the same.
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Figure 4: Average number of spikes produced by the network from Fig. 2.

Unfortunately, due to the limited space, the presentation of additional data
and a more detailed analysis of our experimental data must be omitted.
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