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Abstract. The aperture problem is a direct consequence of any lo-
cal detection in the visual perception of motion. It results in ambiguous
responses of the local motion detectors. Biological systems, such as the
brain of different mammals, are able to disambiguate motion detection.
Such disambiguation is usually seen as a possible result of a pyramidal
feedforward processing with growing receptive fields, but this approach is
not able to detect motion in a simultaneously unambiguous and precise
way. In this work we define a neural model of motion disambiguation that
achieves both criteria, mainly with the help of excitatory feedback. Our
model mostly differs from previous ones by incorporating lateral inhibition.
Its main advantages are: tolerance to noise and stability. We perform tests
on synthetic image sequences that show the effectiveness of our approach.

1 Introduction

Visual perception of motion is a major challenge in machine perception research,
since it constitutes an important step in a wide variety of tasks such as path-
finding, estimation of time to collision, perception of gestures, movement control,
etc. In [1], we have developed a bio-inspired neural architecture that computes
the optical flow and tracks one or several moving objects in a visual scene. Our
model massively uses bio-inspired inhibitory/excitatory mechanisms that induce
local competitions between antagonistic movements so as to improve the local
coherence of motion perception. This work still faces many concrete difficulties,
such as specular effects, shadowing, texturing, occlusion and the well-known
aperture problem, responsible for ambiguous local detection of motion. In this
paper, we address this latter problem.

More precisely, we define a neural model able to disambiguate motion percep-
tion for objects of different sizes, while maintaining the spatial precision achieved
by local motion detectors. Instead of using several layers in a feedforward archi-
tecture, for which precision lies in the early layers while disambiguation may only
be performed in the high-level layers, we combine some feedback and competi-
tion principles within the neural layers of [1] that are inspired by visual cortical
areas V1 and MT (middle temporal). This results in a precise and unambiguous
motion perception that proves very tolerant to noise.

In section 2 we give an overview of aperture problem and current solutions.
Our model is presented in section 3, with corresponding results in section 4.
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2 Aperture problem and disambiguation

In the context of optical flow extraction, many approaches have already been
developed to solve the aperture problem. In this section, we are interested in the
main existing models that are based on correlation and spatio-temporal energy
filtering, as mentioned in [2]. The main reason for this is that these models better
fit the current knowledge of how biological systems perform motion detection
and integration. For example visual perception is commonly considered as a
multi-stage process [3, 4]. We start with a short presentation of the well-known
aperture problem, that causes the ambiguous local perception of motion.

2.1 Aperture Problem

The aperture problem always appears when the optical flow or image flow is es-
timated by means of local detectors. As illustrated in Fig. 1(a), only the motion
component that is orthogonal to the local edge can be detected when looking
into a small aperture. One important observation is that even though a local
detector is inherently ambiguous, it is activated by local movements within a
limited range (see Fig. 1(b) ), so that several detectors may be combined to give
unambiguous responses. This combination is called IOC (intersection of con-
straints, [5]). Another important observation is that local detectors are able to
perform unambiguous detection for special features such as corners (Fig. 1(a) ).
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Fig. 1: A square diagonally moving (a), where circles represent the perceptive
visual field of local motion detectors, and the arrows the detected motion. The
local detectors give a range of possible motion of ±π

2 around the direction that
is, perpendicular to edge orientation (b).

2.2 Mechanisms of disambiguation

As it has been showed by [6], local motion detectors that use correlations (or
region match) are equivalent to energy based filters (sensitive to a certain plane
in the frequency domain), at least for the most common correlation schemes such
as Reichardt Detectors (RD, [7]). We describe here the main strategies proposed
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by other authors to integrate the local detection performed by either correlation
or energy based motion filters.

2.2.1 Decoding the filtering output

In [8], Heeger uses as initial processing 3D Gabor energy filters, set according
to 12 different spatio-temporal orientations that define a profile of activation for
each given location. Heeger proposes a local normalization to deal with contrast
problems. Then he considers the filter outputs as a code for the searched velocity,
that he tries to retrieve by means of a least square technique. This approach
finally reduces to finding the maximum value within a set of quadratic responses
that estimate how much the observed filters fit predefined velocities.

In this approach, Heeger addresses three main ideas: 1) velocity selective
filters require the combination of several frequency-selective filters, 2) locally
true motion is encoded as the maximum response over the different velocities
and 3) the importance of normalization to avoid that local changes in contrast
are confused with actual differences in the responses of filtering. The main
drawback of this technique is that it considers a fixed size of receptive fields. A
test case as the one presented in Fig. 1(a) will not be completely solved: since the
algorithm uses the information available at most at a distance equal to the size
of the local filtering, an aperture problem that requires larger spatial integration
will be only partially solved.

2.2.2 Interpolation

In [3], Simoncelli et al defines a more bio-inspired two-layer model of V1 and
MT. Instead of explicitely computing the energy based filters, a series of oriented
third derivatives of Gaussian are computed in V1. The way to get a velocity
(�v) selective neuron in MT is to linearly combine four different spatio-temporal
frequency selective filters whose response lays in the same plane in the frequency
domain, forming a ring. Since these four filters are not necessarily represented
in V1, they are computed as interpolations of V1 filters.

The main advantage of this model is that the velocity selectivity appears as
much higher since it does not depend directly on the filtering stage. Additionally
the two-level computation allows a much larger spatial integration. The main
drawback is that the neighbourhood to perform this integration is still fixed.
Any aperture problem that requires larger spatial integrations will eventually
fails.

2.2.3 MT-V1 feedback

Bayerl et al [9] propose a mechanism based on the work of [3], in the sense that
it has two sequential levels. The first level directly performs a locally normalized
mechanism that is velocity selective (the first level of [3] is not immediately ve-
locity selective, but rather frequency selective). The second level is also velocity
selective and normalized. The main advantage is the introduction of feedback,

507



that appears to solve the aperture problems as long as two conditions are ful-
filled: at least the corners of the moving object are contained in the image, and
enough recurrent iterations are performed. Drawbacks of this approach are: 1)
in the first level the normalization eliminates spatial differences in the responses
of the filtering and 2) it does not take opposite orientations into account. The
resulting lack of information use may result in a low tolerance to noise.

3 The Model

Our model is inspired by [9], trying to solve its identified problems and to provide
both spatial precision and unambiguous motion perception. Our main contribu-
tion is to show that the principles of [9] may be improved by a competition that
allows to locally maintain the preeminence of the most activated filters while
strengthening the detectors that correspond to the true velocity. Thanks to this
principle, a coherent and precise motion perception spreads along the edges of
the moving object, with a high tolerance to noise thanks to the bio-inspired
competition of [1].

The presented model is a sequence of two neural layers Ω1 and Ω2 (see
Fig. 2(a)), where the outputs of the first one are the inputs for the second one.
In terms of the total number of neurons: |Ω1| ≥ |Ω2|. Normalization is achieved
by shunting inhibition as proposed by [3]. The difference between both levels is
that the second one performs a local competition to determine the predominant
velocity as we proposed in [1], and the first one receives feedback from the second
layer as proposed by [9].

Each layer contains neurons that are associated to the components of vec-
tor �x = (x, y, θ, v) that represent local motion detector parameters: a value of
�x = (2, 0, π

2 , 1) in the first layer represents a local detector centered at spatial
coordinates (2, 0) specialize to detect motion at a speed of 1 pixel per frame to
the right. Value u(�x, t) (resp. v(�x, t)) stands for the potential of the neuron
associated to �x in layer Ω1 (resp. Ω2) at time t. At time t, several iterations are
performed indicated with n. The update state equation for the first level (Ω1)
is defined as:

un+1
1 (�x, t) = un

1 (�x, t) (1 + cvn(�x, t)) (1)

un+1
2 (�x, t) =

un+1
1 (�x, t)

k +
∑

a(Ω1)
un

2 (�x′, t)d�x′ (2)

where I(�x, t) is the input of the system and gives the initial input u0
1(�x, t) =

I(�x, t), c is a control term for the level of feedback, and a represents adding in
the same spatial location for all detectable speeds. The equation for the second
level (Ω2) then is:

vn+1(�x, t) =
∑

b(Ω1)

un+1
2 (�x′, t)s(�x′, �x)d�x′ (3)

508



where s(�a,�b) is the weight function that integrates different speeds detectors and
b represents adding for all possible speed in the close neighborhood. To use this
model, we have to define s(�a,�b). Based on [9] and the competition of [1], we
propose to use:

s(�a,�b) = exp
(
− (ax − bx)2 + (ay − by)2

σ2

)
sgn(avbv) cos(aθ − bθ) (4)
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Fig. 2: The two layer structure (a) for σ = 1.5, connections representing Eq.
2 are not drawed. The convergence of the system to the right detection (b)
using different values for σ in Eq. 4. Higher values for σ increase the speed of
convergence.

4 Results

The criteria we use to measure our results follow the idea proposed by Barron
et al [2]. Fig. 3 shows our testing with a solid untextured square that moves
diagonally, with a velocity �v = (1, 1) in pixels by frame. Noise is added close to
the moving edge in different orientations, but with magnitudes lower than the
true motion, see Fig. 3(a). Our results show how many detectors give the right
direction as function of the number of iterations (see Fig. 2(b)).

As initial filtering we use energy based filters with separable Gabor functions
(x-y-t) with a single spatio-temporal band [8], in a sequence of 3 images. Ex-
periments are performed by sequentially updating layers Ω1 and Ω2, but within
each layer updates are randomly made (asynchronous). If synchronous updates
are used, an additional stage should be added to Ω2 as in [9]. Both layers are
initialized with the filtering output and an additional noise (see Fig. 3).
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Fig. 3: The filtering response of a diagonally moving square (a) initial filtering
with added noise. The layer Ω1 (b) and Ω2 (c) after 4 iterations. All three images
represent the most activated motion detector orientation for each location.

5 Discussion

Many models inspired by brain circuitry have been proposed for the local detec-
tion of motion. All these local filters are sensible to the aperture problem, but
also to different kinds of noise: false positive activation, non binary responses
(higher responses at right velocities but non-zero ones in other velocities) and
contrast variances among others. In our work we propose a model that mainly
handles false positive activations within the context of unambiguous motion de-
tection even in very noisy scenario, without losing any spatial precision. Future
works include (1) using more realistic noise coming from real image sequences
and (2) including static segmentation information in the optical flow extraction.

References

[1] C. Castellanos-Sánchez and B. Girau. Dynamic pursuit with a bio-inspired neural model.
In ACIVS, pages 284–291, 2005.

[2] J. L. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. Performance of optical
flow techniques. CVPR, 92:236–242, 1994.

[3] E. P. Simoncelli and D. J. Heeger. A model of neuronal responses in visual area MT.
Vision Research, 38(5):743–761, March 1998.

[4] M. A. Giese and T. Poggio. Neural mechanisms for the recognition of biological movements.
Nature Reviews Neuroscience, 4(3):179–192, March 2003.

[5] A. Movshon, E. Adelson, M. Gizzi, and W. Newsome. The analysis of moving visual
patterns. Experimental Brain Research, 11:117–152, 1986.

[6] E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the perception of
motion. Journal of the Optical Society of America A, 2(2):284–299, 1985.

[7] J. P. H. Van Santen and G. Sperling. Elaborated reichardt detectors. Journal of the Optical
Society of America A, 2(2):300, 1985.

[8] D. J. Heeger. Model for the extraction of image flow. Journal of the Optical Society of
America A, 4(8):1455–1471, August 1987.

[9] P. Bayerl and H. Neumann. Disambiguating visual motion through contextual feedback
modulation. Neural Computation, 16(10):2041–2066, 2004.

510


