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Abstract.

Our goal is proposing an unbiased framework for gene expression analysis
based on variable selection combined with a significance assessment step.
We start by discussing the need of such a framework by illustrating the
dramatic effect of a biased approach especially when the sample size is
small. Then we describe our analysis protocol, based on two main ingredi-
ents. The first is a gene selection core, based on elastic net regularization
where we explicitly take into account regularization parameter tuning. The
second is a general architecture to assess the statistical significance of the
model via cross validation and permutation testing. Finally we challenge
the system on real data experiments, and study its performance when
changing variable selection algorithm or the dataset size.

1 Motivation

The ultimate goal of cancer research is the design of effective targeted therapies,
which can be achieved only through accurate disease classification and molecular
mechanisms understanding. A powerful approach to detect significant molecular
alterations is provided by gene expression profiling. In this context a main goal,
besides classification, is finding a gene signature, that is a panel of genes able
to discriminate between two given classes e.g. patients and control. Such an
analysis encompasses at least two steps, gene selection and model assessment.
When dealing with high-throughput data the choice of a consistent selection
algorithm is not sufficient to guarantee good results. It is therefore essential to
introduce a robust methodology to select the significant variables not suscep-
tible of selection bias [1] and to use valid statistical indicators to quantify and
assess the significance of the results. With a simple example, we point out the
risks of selection bias in gene expression analysis. If the gene selection phase is
performed out of a validation loop a biased model is generated. This yields a
perfect cross validation error on the given data but does not guarantee gener-
alization properties. As an example we performed the experiments illustrated
in Fig.1 (left) on a real dataset1, in two different set-ups. The curves represent
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1see Results section for details on the dataset
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least squares leave-one-out error as the number of genes, selected according to
their t-score, increases: in the dashed line case, gene ranking was based on the
entire dataset, while in the other case the ranking phase was incorporated in a
validation loop. An extreme case is shown in Fig.1 (right) where the same proce-
dure was performed on a completely random dataset (where the values and the
labels are randomly sampled from a uniform distribution); the biased method
still achieves perfect accuracy, while the unbiased oscillates around chance.

Fig. 1: Biased vs. unbiased schema on real and random dataset

2 Statistical Analysis Framework

We now present an unbiased model selection protocol which is able at the same
time to identify the most relevant variables and to achieve a good prediction
performance. Our protocol, shown in Fig.2 is based on two main steps: first, we
select the relevant features and build the predictive model (internal loop - Sec.
2.1), then we assess its statistical robustness and significance within a complete
validation framework (external loop - Sec. 2.2).

2.1 Variable selection and classification algorithm

Before illustrating our algorithm, let us add few considerations on the desirable
properties of a variable selection algorithm. A good algorithm should take into
account at least linear interaction of multiple genes. Many approaches take into
consideration one gene at the time and then rank them according to their fold-
change, as in the analysis of differentially expressed genes, or to their prediction
power, as with single variable classifiers [2, 3]. However, such methods discard
relevant information concerning the combined effect of groups of two, three or
even many genes together. Indeed in most cases a multivariate model is prefer-
able. Another drawback of many variable selection algorithms is the rejection of
part of the relevant genes due to redundancy. In many biological studies some of
the input variables may be highly correlated with each other. As a consequence,
when one variable is considered relevant to the problem, its correlated variables
should be considered relevant as well. Finally, from the statistical viewpoint a
minimal requirement is asymptotic consistency of the algorithm, ensuring that
results will improve as the number of training samples increases, and eventually
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Fig. 2: The structure of a bias-selection aware framework.

the best possible estimator is reached when enough data is available. Given
the above premises we focused on the elastic net selection method originally
presented by [4] and studied and used in [5, 6].

To describe such method we first fix some notation. Assume we are given a
collection of n subjects, each represented by a p-dimensional vector x of gene
expressions. Each sample is associated with a label y ∈ {−1, +1}, assigning it to
a class (e.g. patient or control). The dataset is therefore represented by a n× p
matrix X ∈ R

n×p, where p >> n and Y ∈ R
n is the labels vector. We consider

a linear model f(x) = x · β and our goal is is to find a sparse approximation
sign(x·β) ∼ y, where sparse means that many of the coefficients in β are exactly
zero. Then elastic net regularization amounts to finding

βen = argminβ

[
‖Y − Xβ‖2

2 + τ
[
‖β‖1 + ε ‖β‖2

2

]]
,

where the least square error is penalized with the �1 and �2 norm of the coefficient
vector. This approach guarantees consistency of the estimator [5] and enforces
the sparsity of the solution by the �1 term, while preserving correlation among
input variables with the �2 term. Differently to [4] we estimate the minimizer of
the functional using the simple iterative soft thresholding algorithm proposed in
[5, 6]. Once the relevant features are selected we use regularized least squares
(RLS) to estimate the classifier.

The parameter ε in the elastic net is fixed a priori and governs the amount
of correlation we wish to take into account. The training for selection and
classification requires the choice of the regularization parameters for elastic net
and RLS denoted in the following with λ∗ and τ∗, respectively. This is achieved
via a cross validation incorporated in the inner loop of our procedure (see Fig.
2). A similar data splitting technique is present in the outer loop to asses
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classification performance of the model, so we describe it in the next section.

2.2 Model Assessment

In this section we focus on the external loop, needed to verify the goodness of
the estimated model both in terms of performance stability and significance.
In order to obtain an unbiased estimate of the classification performance[1],
this step must be carefully designed by holding out a blind test set. Since the
available samples are very few compared to the number of variables, this step
has to be performed on different subsamplings and its results averaged [7]. In
our framework, given a dataset, we first split it in B subsplits. As shown in
Fig. 2, for each dataset we evaluate the optimal regularization parameters τ∗

b

and λ∗
b with b = 1 . . . B, by performing the inner loop described above on the

training set TRb and producing B models and lists of relevant genes. For each
of the B models we now have a blind test set for model assessment. Prediction
performance ERRb of the bth model can then be evaluated as the classification
error on test set TSb. In this way we can honestly estimate the average error
Avg(ERR) of our models.

We can further asses the significance of Avg(ERR) via permutation testing
[8]. In a randomized experimental design, objects or individuals are randomly
assigned to an experimental group. In the case of binary classification, we ran-
domly permute the labels of the available data so that patients of class A can
belong to class B and vice-versa. As we do this, we produce B training sets
where we destroyed on purpose the relation between genes and groups of pa-
tients. The RLS classifier is trained on the bth bogus training set, restricted to
the genes in listb, and the error estimated on the true test set TSb. As before,
we average over the B splits and repeat this step 1000 times, hence obtaining the
null hypothesis distribution. Now we can say with which confidence the result
obtained with the original training set differs from the random distribution. The
probability of obtaining a result at least as extreme as Avg(ERR) is referred
to as p-value, which is computed as the cumulative sum on the random distri-
bution (non-parametric test). To reject the null hypothesis the p-value must be
compared with a fixed significance level, typically set to 5%,1% or 0.1%.

3 Results

We apply our schema to a prostate tumor dataset. We are given a cohort of
102 samples (tumor vs. normal tissue) analyzed by Affymetrix microrarray
technology, platform U95Av2 [9]. In the context of the unbiased framework
described above with B = K = 10, we compare the EN/RLS algorithm with
an off-the-shelf approach based on t-score filtering and RLS. The error achieved
is 7% in the former case while in the latter is 8%. This is shown in Fig. 3, in
comparison with the null distribution provided by the permutation test; in both
cases p-value is zero.

In some cases the significance of an experiment is intrinsically weak due to
the number of the samples. In fact, if the available data are not enough, the
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Fig. 3: Distribution obtained by 1000 permutations of training labels (p-
value=0) in EN/RLS (left) and t-score/RLS algorithm (right). The dashed line
represents the estimated error

estimated test error could be fairly low but still falling in the acceptance region of
the null hypothesis distribution. To illustrate such a situation, we subsampled
the prostate dataset by progressively decreasing the number of samples n =
20, 30, 40, 50 and performing the entire experiment for each set of data. As
shown in Fig. 4 we observe the result of the permutation test for increasing
number of samples. Notice that the distribution is more peaked as the number
of data increases while the cross-validation test error (dashed line) decreases. To
avoid bias, each population has been subsampled 10 times. For each dataset we
repeat the schema and evaluate p-values. Fig. 5 represents the average p-value
for the different populations.
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Fig. 4: Null-hypothesis distribution for n=20 (left), n=30 (center) and n=40
(right); the dotted line represents the estimated cross validation test error.

4 Conclusions

In this paper we discuss a possible framework for a statistically significant analy-
sis of microarray data. The core of such a framework is an embedded variable
selection method, namely elastic net regularization, allowing for robust gene
selection. A correct use of the latter requires at least two separate steps: param-
eter tuning (model selection) and performance estimates (model assessment).
To avoid selection bias these two steps must be clearly distinct and carefully
designed. We present a framework based on two nested loops: the internal one
is responsible for model selection and is based on a cross validation strategy.
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Fig. 5: Left: average p-value with 90 − 10 percentile confidence interval. Right:
number of datasets for which the null hypothesis is rejected for different signifi-
cance levels

The external loop is for model assessment and uses both validation estimates
and permutation test. The importance of having an unbiased framework is sup-
ported by some simple but informative experiments and the performance of the
proposed procedure is illustrated on a benchmark microarray dataset.
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