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Abstract. This paper presents a bio-inspired model for visual perception
of motion through its principal indicator : the neuromimetic motion indi-
cator (NMI). This indicator emerges out of the mechanism of antagonist
interactions (MAI) where an architecture of oriented columns, local and
distributed interactions of the neurons in the primary visual cortex (V1)
is operated. The NMI indicator classifies the motion in : null motion and
motion, and it estimates the number of moving objects in the scene.

1 Introduction

Several bio-inspired models exist for visual perception of motion. Some of them
are inspired by the primary visual cortex (V1) with a strong neural cooperative-
competitive interactions that converge to a local, distributed and oriented auto-
organisation [1, 2, 3]. The others are inspired by the middle temporal area
(MT) with the cooperative-competitive interactions between V1 and MT and
an influence range [4, 5]. And some others are inspired by the middle superior
area (MST) for the coherent motion and ego-motion [6, 7].

These models are based on the local detections by integration of various work
directions upon different scales and spaces to end with a global answer. In this
paper I present a neuromimetic approach for visual perception of motion that
classifies the motion, first into two types : null motion and motion; next, it
estimates the number of moving objects in the scene.

I will show the main characteristics of the main stage of the model proposed
by [8] (MAI mechanism). Next, I manipulate its different parameters. Finally, I
show the principle of my neuromimetic motion indicator and some results.

2 Neuromimetic connectionist architecture

This section present the main characteristics of the bio-inspired model for motion
description based on the connectionist approach reported in [8, 9].

2.1 Causal spatio-temporal filtering (CSTF)

The first stage of this bio-inspired connectionist approach is mainly based on
the causal spatio-temporal Gabor-like filtering and the second stage is a local
and massively distributed processing.

∗This research was partially funded by project number 51623 from “Fondo Mixto Conacyt-
Gobierno del Estado de Tamaulipas”.
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Fig. 1: Architecture of bio-inspired connectionist model (adapted of [9]).

This filtering is performed in two steps (see equation 1) : a Gabor-like spatial
filtering and a causal temporal processing [10, 9].

Ht,θ,�v(x, y) =
∫

Sθ(x − v̂1, y − v̂2)dt (1)

v̂1 =
t̂

τ − 1
v1cosθ, v̂2 =

t̂

τ − 1
v2sinθ (2)

where Sθ(·, ·) is the Gabor-like spatial filtering, �v = (v1, v2) the speed vector and
τ the number of images in the subsequence, and 0 ≤ t̂, t < τ .

For the spatial filtering, Gabor-like filters are implemented as image convo-
lution kernels in Θ different directions. I usually work with Θ = 8 for simplicity.

2.2 Mechanism of Antagonist Interactions (MAI)

The second stage of the model described in [8] (depicted to the right of fig-
ure 1) emulates a mechanism of antagonist interactions by means of excitatory-
inhibitory local interactions in the different oriented cortical columns of V1.

Usually in excitatory-inhibitory neural models, the weighted connections to
and from neurons have modulated strength according to the distance from one
another. Nevertheless, I call it a mechanism of antagonist interactions because
the inhibitory connections among neurons regulate downwards the activity of op-
posing or antagonist neurons, i.e. neurons that do not share a common or similar
orientation and speed. On the other hand, excitatory connections increase the
neuron activity towards the emergence of coherent responses, i.e. grouping neu-
ron responses to similar orientations and speeds through an interactive process.

Then the updating of the internal state of a neuron is

η ∂H(x,y,T )
∂T = −A · H(x, y, T )

+(B − H(x, y, T )) · Exc(x, y, T )
−(C + H(x, y, T )) · Inh(x, y, T )

(3)
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where −A ·H(·) is the passive decay, (B −H(·)) ·Exc(·) the feedback excitation
and, (C + H(·)) · Inh(·) the feedback inhibition. Each feedback term includes
a state-dependent nonlinear signal (Exc(x, y, T ) and Inh(x, y, T )) and an au-
tomatic gain control term (B − H(·) and C + H(·), respectively). H(x, y, T )
is the internal state of the neuron localised in (x, y) at time T , Exc(x, y, T ) is
the activity due to the contribution of excitatory interactions in the neighbour-
hood ΩΩE

(x,y) and Inh(x, y, T ) is the activity due to the contribution of inhibitory

interactions in the neighbourhood ΩΩI

(x,y). Both neighbourhoods depend on the
activity level of the chosen neuron in each direction. A, B and C are the real
constant values and η is the learning rate. For more details on the excitation
and inhibition areas see [8, 9].

Let ρ be the influence range of neuron (x, y) in this stage. This neuron
receives at most ρ2 excitatory connections from neurons with the same direction
and speed and at most (V · Θ − 1) · ρ2 inhibitory connections from other close
neurons.

At this level, each pixel correspond to Θ · V different neurons that encode
informations of directions and speeds.

3 Neuromimetic motion indicator (NMI)

To obtain the NMI indicator, I generate a set of controlled sequences of real
images and I make the relations between the different values of active neurons
and their variations (§3.1). Next, I propose the basic ranges and their relations
with the other sizes of images (§3.2).

3.1 Behaviour of NMI in the controlled sequences of real images

The equation 3 shows the updating rule in the MAI for the neurons. Let S be
a real image sequence and let R ⊂ S be a subsequence with Card(R) = τ (the
subsequence size) and let p be the percentage of the neurons to update.

The MAI mechanism updates p% of active neurons (if Ht,θ,�v(x, y) > 0.5) and
I obtain in it two frequencies : the active neurons after updating (ANaU , after
application of the equation 3) and negative updating increase (NUI, only the
frequency of (B − H(·)) · Exc(·) − (C + H(·)) · Inh(·) < 0 in the equation 3).

The product between ANaU and NUI in all the different controlled subse-
quences inspire us to propose our neuromimetic indicator : neuromimetic motion
indicator, NMI = ANaU ∗ NUI.

In the table 1 I show the percentages of ANaU, NUI and NMI for controlled
sequences of real images with ego-motion. In almost all the cases NMI > 100.00.
Only two cases showed inferior values due to very weak changes of contrasts got
by my Gabor-like filters. But all values of NMI increase according to speed.

For motion classification, I took a subsequence of each sequence of real im-
ages : a) the motion does not exist and b) the motion exist. The table 2 shows
the obtained values of sequences of real images (two first lines) and the well-
known sequence of Yosemite Fly-Through.
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S ↑ ↓ → ← ↙ ↖ ↘ ↗

1 34.80 30.23 28.98 22.73 27.66 30.23 36.60 40.72
ANaU 2 47.77 45.64 42.52 36.87 41.50 46.44 51.87 50.89

3 50.12 47.87 44.81 39.55 42.33 42.82 48.16 50.40
1 4.75 3.88 2.93 1.96 3.69 3.89 4.82 7.79

NUI 2 9.51 7.55 7.20 4.87 6.11 6.81 8.71 11.09
3 11.73 9.92 8.75 5.95 7.05 8.00 9.87 11.57
1 165.32 117.27 84.80 44.55 102.02 117.68 176.35 317.06

NMI 2 454.53 344.75 306.16 179.67 253.62 316.05 451.85 564.54
3 587.99 474.98 392.15 235.26 298.45 342.70 475.20 583.11

Table 1: Percentages of frequencies of NMI behaviour for the controlled se-
quences of real images where there is ego-motion.

Sequence Size ANaU NUI NMI

Mist KW 442368 0.00 0.11 0.00
Walk 110594 0.14 0.13 0.02

Yosemite 79632 48.94 7.28 356.16

Table 2: Percentages of frequencies of NMI behaviour for the sequences-type.

The first sequence show the null motion; next, motion and, finally, ego-
motion. But the different sizes of images influence the NMI values. The inter-
pretation of the different values obtained are shown in the next subsection.

3.2 Motion type

According to the values shown in the tables 1 and 2, the NMI indicator dis-
criminates the null motion and motion.

The table 3 shows the proposed ranges for NMI and their adaptation for the
Kalsruhe-Wilhelm-Strasse. The basic ranges have been obtained for a sequence
of real images of 384 × 288 pixels (second column). The adaptation of different
sizes of images follow this criterion :

Condnew =

⎧⎨
⎩

(
1 − Anew∗100

4Abase

)
NMIbase if Anew > Abase(

1 + Anew∗100
4Abase

)
NMIbase if Anew < Abase

(4)

where Abase and Anew are the areas in pixels of the basic and new image, re-
spectively.

4 Experiment results

The free parameters were set according to the suggestions in [8]. I present
the results for the sequence Karl-Wilhelm-Strasse (KWS). This is a road traffic
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Description Basic ranges KWS

Null motion NMI < 0.10 < 0.00
Small objects or noise NMI < 1.00 < 0.01

1 to 2 objects NMI < 5.00 < 0.05
3 to 5 objects NMI < 10.00 < 0.10
6 to 9 objects NMI < 40.00 < 0.40

10 or more objects NMI < 145.00 < 1.45

Table 3: Adaptation basic ranges of the neuromimetic motion indicator (NMI).

sequence obtained by a surveillance camera and they are available in the Insti-
tute for Algorithm and Cognitive Systems of the Karlsruhe University, Germany
(1541 images of 768 × 576 pixels in RGB format).

The figure 2 shows four images of this sequence and the graph of its neu-
romimetic motion indicator (NMI).

The KWS sequence shows the road traffic in normal conditions. The NMI
for this sequence shows four moments of weak neural activities : the first two
with one or two moving objects (images 153 to 190 and 549 to 596) and the
last ones with a short instance with null motion (images 873 to 881 and 1534 to
1537).

Apart from these weak neural activities there are also three peaks in the NMI
graph of KWS. The first one corresponds to tramway movement, the second one
to movement of the cars and the last one to many moving cars. According to
the table 3 there are 6 to 9 moving objects (and within them there are more
than 10 at a moment), more than 10 moving objects, 6 to 9 moving objects and
more than 10 moving objects, respectively.

The sudden changes in the NMI values owe to the sudden appearance or
disappearance in general of a mobile object in the scene.
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Fig. 2: From the top-left to the down-left in clockwise direction four images of
the sequence. In the second column its neuromimetic motion indicator.
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5 Conclusions

This work is based on the Castellanos model [9] : a neuromimetic connectionist
model for visual perception of motion. A model fully inspired by the visual
cortex system, the superior areas and their relations.

In this paper I took advantage of the low-level analysis to detect local motions
to obtain the global indicator : the neuromimetic motion indicator issued by
MAI mechanism.

My first experiments show that this model is capable to estimate the null
motion, simple motion and an estimate of the number of moving objects. The
estimation of motion is robust in quite complex scenes without any predefined
information. Nevertheless, the estimation of NMI is fastidious. The experimen-
tal base values were verified for the sequences of real images of 384× 288 pixels
and their adaptations for other sizes are proportional.

My current work includes experimenting on the influence of relative sizes of
moving objects in the sequences, their contrasts and speeds and studying the
same neuromimetic indicators for the moving fields only.
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