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Abstract. In this paper, we consider the problem of implementation
of neural network in the context of the level 2 trigger of HESS2 project.
We propose a hardware architecture which which takes advantage of high
parallelism, pipelining and the intrinsic nature of FPGAs.

1 Introduction

Neural networks have successfully been implemented in a wide variety of appli-
cations and keep on demonstrating their efficiency compared to other classical
techniques in pattern recognition and classification. One interesting field in
which neural techniques have been of a great interest is the triggering of par-
ticles in physics experiments [1],[2] . The triggering specificity consists (i) in
taking a decision according to collected events and (ii) in identifying the nature
of particles issued from an impact within a collider. These experiences have
clearly taken advantage of the neural approach in terms of performances and
accuracy.

In this article, a solution based on a neural system is proposed in a close
domain: the gamma-ray astronomy. The presented results have been developed
within the HESS collaboration which is interested in detecting cosmic gamma ray
sources all around the universe. The HESS1 experiment [3] is based on the atmo-
spheric Cherenkov technique: as a high energy cosmic ray hits the atmosphere,
it creates an extensive air shower by interaction with the atmosphere. This phe-
nomenon is known as Cherenkov light. The experiment consists in studying this
Cherenkov light in order to detect the gamma particles hitting the atmosphere.
It thus permits to evaluate the position and nature of the gamma-ray sources.

The current HESS1 system (phase 1) is composed of four imaging Cherenkov
telescopes, arranged on a square. By combining the information of, at least, two
telescopes at the same time, the system makes intensive use of the stereoscopic
approach. This enables to significantly increase the performances in terms of
high energy particle detection (from 100GeV to 50TeV).

One of the main specificities of these experiences resides in its capability of
processing huge amount of data in a restricted time window. A trigger system
composed of two levels has been designed within the HESS1 experiment: a level
1 (L1) per telescope and a unique central trigger. Such a trigger system is useful
to make an on-line selection of relevant events for further off-line processing.
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The trigger inputs coming from the telescope consist of a 960-pixel image. An
image represents a particle signature.

The L1 trigger consists in removing isolated pixels within the collected image
by applying analog thresholds. These pixels are typically due to noise and do not
bring any additional information on the particle type. A global central trigger
allows to perform time correlation between relevant data sent by each L1. If
there are relevant data from at least two telescopes at the same time, the event
is stored for future off-line image analysis and source reconstruction.

2 The HESS2 project

The outstanding performance obtained so far in the HESS1 experiment has led
the research labs involved in this project to improve the existing system [4]. A
Very Large Cherenkov telescope (VLCT) is currently being built and will take
place in the center of the previous telescope system. The VLCT will reduce
the energy threshold in stereoscopic mode allowing to collect more photons at a
given energy. It will function in monoscopic mode for lower energies. Moreover,
the VLCT camera will also be improved. All these improvements will contribute
to a better sensitivity of the HESS1 system. The quality and the reconstruction
of the gamma parameters will thus be improved. The HESS2 experiment will
upgrade the HESS1 experiment by (i) featuring a new event class (energies from
10 to 50GeV), (ii) increasing the previous system sensitivity for energies from
50 to 100GeV, (iii) improving the resolution for energies upper than 100GeV.

Moreover, in order to increase the sensitivity and thus obtain the best per-
formances, the trigger threshold will be reduced. In this context, the quantity of
data to be collected by the VCLT will drastically increase. A simulated trigger
rate of 2.5kHz is expected, reaching up to 20kHz for the trigger worst conditions.
The trigger rate associated with the huge amount of data to be processed on
line (240GBauds in approximately 10µs) has led the collaboration to propose a
new efficient trigger scheme composed of three levels: two trigger levels (L1 and
L2) and a central trigger.

Fig. 1: Trigger system in HESS2

The Fig. 1 describes the function of the trigger system. Data coming from
the camera are stored in the SAM (Swift Analog Memory) allowing the storage
of an entire image. In parallel, data are also sent to the level 1 trigger (L1)
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which has the same structure as in HESS1. The L1 trigger notably generates a
binary signal indicating whether a specific event has to be kept (L1Accept) or
rejected (L1Reject). If the L1Accept signal is valid, the complete image is stored
and converted to a serie of digital data. These data are stored in a FIFO until a
L2Accept/L2Reject signal coming from the level 2 trigger (L2) which will decide
to keep or reject this event. In parallel, data are sent to the PreL2 stage which
thresholds the incoming images according to three energy levels. The image are
then sent to the L2 trigger. The L1 and L2 decisions are expected at average
rates of 100kHz and 3.5kHz respectively.

3 The L2 Triggering problem

The structure of the L2 trigger receives L1Accept signals from the trigger man-
agement system at a maximum rate of 100kHz and must deliver a decision at
a 3.5KHz rate. Incoming data consist of 2048 pixels that are threshold by the
PreL2 step. Moreover, each pixel of the image can only take three different
values according to their energy levels. The L2 trigger is meant to rebuild the
images and make a decision according to the particle signature depicted on the
images from the PreL2. A signature can represent 3 different types of particles:
gammas, protons or muons. In order to solve this pattern recognition problem,
a neural solution associated to its preprocessing steps has been envisaged.

4 A Neural solution

The L2 trigger can be divided in 3 steps as shown in Fig. 2: a rejection step, a
preprocessing step and a classifier. Since a particle signature has to be processed
by the L2 trigger in 10µs (PreL2 feed the L2 at a rate of 100kHz), and according
to processing latencies, the rejection and preprocessing steps assumed to be
processed in about 5µs. This only leaves 5µs to perform the classification.

Fig. 2: Level 2 trigger system

The rejection step permits to eliminate very small particles whose signature
is smaller than 4 pixels. In such case, it is assumed that the classifier is not able
to make a valuable decision. The preprocessing step consists in applying more
or less complex transformations on the images. This aims at reducing the input
space of the classifier in order to drastically simplify the learning process. Many
preprocessing algorithms have been envisaged and most of them are destined to
apply transformations on the images in order to help the classifier in its task.
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Such transformations deal with rotation and translation invariance of the particle
signature within the image. The extraction of region of interest [5], Zernike [6]
and Hu moments [7] have been notably studied and provide satisfactory results
in terms of recognition performances.

The proposed classifier is a MLP neural network with a single hidden layer
and 3 outputs corresponding to the different classes of particles to be determined
(gammas, muons, protons). The number of inputs depends on the preprocessing
step and it is assumed to get a value between 6 and 50 at a maximum.

5 Proposed Neural Network Architecture

According to the nature of the various preprocessing algorithms, it has been
envisaged to design a flexible architecture that may easily adapt to a new con-
figuration of the neural network architecture.

The architecture enables to process a multi-layer perceptron composed of I
input nodes, H hidden nodes and O output nodes. An example of the proposed
architecture for I = 6,H = 8, O = 3 is depicted in Fig. 3. Incoming data arrive
in sets A, B,etc. where each set contains I elements. The architecture is divided
into two levels : the Hidden layer Computation (HC) and the Output layer
Computation (OC).

Fig. 3: Neural network with 6 inputs, 8 hidden units and 3 outputs.

Each input arrives at each clock cycle and is maintained for H clock cycles.
Any jth ROM in HC, stores all the weights corresponding to the jth input node,
connected to H hidden nodes (i.e. wjk where k runs from 1 to H), shifted in
order by j − 1. Any ith ROM in OC stores the weights corresponding to all the
interconnections of that output node with all the nodes of the hidden layer (i.e.
wki where k runs from 1 to H). The output of the counters are used to select
the appropriate weights to be passed on to the corresponding multipliers.
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At each clock cycle, at the jth level in HC, apart from the addition operation
between the present multiplier output and the partial sum from the previous
level, the multiplication operation for the next input is also simultaneously per-
formed. Thus, at each clock cycle, the sum ripples and accumulates through HC
adders until SIGMOID0 is fed. This block feeds the outputs of the hidden layer
sequentially to all the multiply-accumulators (MACs) in OC which produce the
weight-input inner product for each output node after receiving all the outputs
of the hidden layer. Each adder, multiplier and activation function unit (sig-
moid) has a latency of 1 clock cycle. The final results of the output layer in OC
are available in parallel as o1, o2, o3 from the corresponding sigmoid blocks.

In general, the neural network outputs are available I+H+c clock cycles after
the first input of a set is given, where c is a constant depending on the latencies of
different blocks in the system. In the example illustrated above, since the latency
of the MAC unit is 4, c = 6. The outputs are available H + d clock cycles after
the arrival of the last input of the set, where d is also a constant depending on
the latencies of different blocks in the system. In the above example, d = 7. On
each clock cycle, I +O multiplications corresponding to I +O multiplying units
are done, which implies computing rate of (I + O) ∗ f CPS.

5.1 Advantages of the architecture

The number of multipliers required for the network is fixed to I + O, inde-
pendent of any arbitrarily large number of hidden nodes. A single activation
function unit (sigmoid) is used for the entire hidden layer. This enables to save
memory resources available within the FPGA. This architecture is also highly
pipelined. Since the architecture does not require complex control, scalability to
accommodate more hidden, input or output nodes is ensured.

5.2 Simulation Results

The architecture was implemented on a Xilinx Virtex 4 xc4vfx12 FPGA which
is one of the smallest device of the family. This circuit has been envisaged since
it should be retained in the HESS2 project.

The activation function sgn(x) ∗ (1− 2−|x|) [8] has been used. This function
is similar to the sigmoid function and is easy to implement on hardware with
shift registers and adders. The resources consumed by this implementation vary
insignificantly with the precision of x, as compared to that consumed by a pure
look up table based implementation. Moreover, memory must be saved in our
context, since the preprocessing phase should make intensive use of LUTs. The
inputs and weights are implemented with 16 bits precision due to the nature of
the preprocessed incoming data. The ROMs are 256 words deep. The multipliers
are implemented with embedded DSP48s blocks.

The synthesis report of different neural networks configurations is summa-
rized in table 1. The implementation report shows that the required resources
do not vary significantly according to a given number of hidden nodes. Only
the processing time changes. Note that the timing constraints are respected by
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far and that a more ambitious and time-consuming preprocessing stage may be
envisaged within the same chip.

Neural network Maximum Occupied 4 input DSP48s Execution
configuration frequency slices LUTs time
I, H, O (MHz) (ns)

6, 12, 3 118.43 2034 (37%) 3715 (33%) 9 (28%) 240

6, 8, 3 118.43 2035 (37%) 3717 (33%) 9 (28%) 200

6, 16, 3 118.43 2034 (37%) 3715 (33%) 9 (28%) 280

25, 50, 3 118.43 5228 (95%) 9272 (84%) 28 (87%) 810

25, 35, 3 118.43 5229 (95%) 9273 (84%) 28 (87%) 660

25, 65, 3 118.43 5230 (95%) 9275 (84%) 28 (87%) 960

Table 1: Summary of implementation reports and execution times at a frequency
of 100MHz for different configurations of neural networks

6 Conclusion

The proposed hardware architecture enables to process neural networks in real-
time according to the tight timing constraints imposed by the HESS2 experi-
ment. By combining high parallelism and pipelining and by taking advantage of
the intrinsic nature of FPGAs, it allows efficient process of neural networks at a
micro-second scale, opening a wide range of unexplored real-time applications.
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