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Abstract. In this paper a novel procedure to select the input nodes
in neural network modeling is presented and discussed. The approach is
developed in a multiple testing framework and so it is able to take under
control the well known data snooping problem which arises when the same
sample is used more than once for estimation and model selection.

1 Introduction

When using neural networks the selection of an adequate model is always a hard
task, due to the ”atheoretical” nature of the tool and its intrinsic misspecifica-
tion. The problem is not new and several approaches have been proposed in the
literature both in a frequentist and Bayesian framework [9, 7] (see also [2] and
the papers in the same special issue).

In this paper a strategy for input selection in neural network modeling is
proposed. The novel approach is in the same spirit of those based on relevance
measures [1] but, to avoid the data snooping problem, familywise error rate is
controlled by using a multiple testing scheme [10]. When compared to existing
testing solutions, the approach does not require a priori identification of a proper
set of variables to test, which can often lead to sequential testing schemes and,
as a consequence, to loose control over the true size of the test. The sampling
distribution of the test statistic involved is approximated by subsampling, a
resampling scheme which is able to deliver consistent results under very weak
assumptions [5]. The paper is organized as follows. In section 2 neural network
modeling is briefly reviewed and the variable selection procedure is presented
and discussed. In section 3 the subsampling scheme is described. In section 4
some results on a small Monte Carlo study are reported to show the performance
of the proposed approach.

2 Variable selection in neural network modeling

Let
{
Zi =

(
Yi,XT

i

)T
}

be iid random vectors of dimension (d+ 1). The vari-
able Yi represents a target and it is usually of interest its relationship with the
(explanatory) variables Xi. If E (Yi) < ∞, then E (Yi |Xi ) = g (Xi) and we can
write

Yi = g (Xi) + εi (1)

where εi ≡ Yi−g (Xi) and g is a function satisfying general regularity conditions.
Clearly, by construction the error term εi is such that E (εi |Xi ) = 0.
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The function g embodies the systematic part of the stochastic relation be-
tween Yi and Xi. It can be approximated by using the output of a single hidden
layer feedforward artificial neural network of the form:

f (x,w) = w00 +
r∑

j=1

w0jψ
(
x̃T w1j

)
(2)

where w ≡ (
w00, w01, . . . w0r,wT

11, . . . ,w
T
1r

)T is a r(d+ 2) + 1 vector of network

weights, w ∈ W with W compact subset of R
r(d+2)+1, and x̃ ≡ (

1,xT
)T is the

input vector augmented by a bias component 1. The network (2) has d input
neurons, r neurons in the hidden layer and identity function for the output layer.
The (fixed) hidden unit activation function ψ is a sigmoidal function.

To select a proper set of input variables, we focus on a selection rule which
involves: (i) definition of variable’s relevance to the model; (ii) estimation of the
sampling distribution of the relevance measure; (iii) testing the hypothesis that
the variable is irrelevant.

Following White and Racine [12], the hypotheses that the independent vari-
able Xj has no effect on Y , in model (1) can be formulated as:

∂g (x)
∂xj

= 0, ∀x. (3)

Of course the function g is unknown but we equivalently investigate the
hypotheses

fj (x;w0) =
∂f (x;w0)

∂xj
= 0, ∀x. (4)

since f is known and w0 can be closely approximated. So, if a given variable
Xj has no effect on Y we have E

[
f2

j (x,w0)
]

= 0, where the square function is
used to avoid cancelation effects.

In this perspective, the hypothesis that a given set of variables has no effect
on Y can be formulated in a multiple testing framework as

Hj : θj = 0 vs H ′
j : θj > 0, j = 1, 2, . . . , d. (5)

where θj = E
[
f2

j (x,w0)
]
. So, the problem here is how to decide which hypothe-

ses to reject, accounting for the multitude of tests. In such a context, several
approaches have been proposed to control the familywise error rate (FWE), de-
fined as the probability of rejecting at least one of the true null hypotheses. The
most familiar multiple testing methods for controlling the FWE are the Bon-
ferroni method and the stepwise procedure proposed by Holm [3]. In any case,
both procedures are conservative since they do not take into account the depen-
dence structure of the individual p-values. These drawbacks can be successfully
avoided by using a recent proposal by Romano and Wolf [10], suitable for joint
comparison of multiple misspecified models.
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Each null Hj can be tested by using the statistic,

T̂n,j = n−1
n∑

i=1

f2
j (Xi, ŵn) (6)

where the parameter vector ŵn is a consistent estimator of the unknown pa-
rameter vector w0. Clearly, large values of the test statistics indicate evidence
against Hj .

Now, relabel the hypothesis from Hr1 to Hrd
in redescending order with

respect to the value of the test statistics T̂n,j, that is T̂n,r1 ≥ T̂n,r2 ≥ . . . ≥ T̂n,rd
.

The stepdown procedure begins by testing the joint null hypothesis that all
hypotheses Hj are true. This hypothesis is rejected if T̂n,r1 is large, otherwise
all hypotheses are accepted. In other words, in the first step the procedure con-
structs a rectangular joint confidence region for the vector (θr1 , . . . , θrd

)T , with
nominal joint coverage probability 1 − α. The confidence region is of the form[
T̂n,r1 − c1,∞

)
× · · · ×

[
T̂n,rd

− c1,∞
)

where the common value c1 is chosen
to ensure the proper joint (asymptotic) coverage probability. If a particular
individual confidence interval

[
T̂n,rj − c1,∞

)
does not contain zero, the cor-

responding null hypothesis Hrs is rejected. Once a hypothesis is rejected, it
is removed and the remaining hypotheses are tested by rejecting for large val-
ues of the maximum of the remaining test statistics. If the first R1 relabeled
hypotheses are rejected in the first step, then d − R1 hypotheses remain, cor-
responding to the labels rR1+1, . . . , rd. In the second step, a rectangular joint
confidence region for the vector (θR1+1, . . . , θrd

)T is constructed with, again,
nominal joint coverage probability 1 − α. The new confidence region is of the
form

[
T̂n,rR1+1 − c2,∞

)
× · · · ×

[
T̂n,rd

− c2,∞
)
, where the common constant c2

is chosen to ensure the proper joint (asymptotic) coverage probability. Again,
if a particular individual confidence interval

[
T̂n,rj − c2,∞

)
does not contain

zero, the corresponding null hypothesis Hrj is rejected. The stepwise process is
repeated until no further hypotheses are rejected.

3 The subsampling approximation

The estimation of the quantile of order 1 − α is obtained by using the subsam-
pling. The resampling scheme runs as follows. Fix b such that b < n and let

Y1, . . . ,YS be equal to S =
(
n
b

)
subsets of {Z1, . . . ,Zn}. Let T̂ s

b,j be the

test statistic evaluated at Ys, s = 1, . . . , S. Then, for x ∈ R
d, the true joint cdf

of the test statistics evaluated at x is given by

Gn (x) = Pr
{
T̂n,1 ≤ x1, T̂n,2 ≤ x2 . . . , T̂n,d ≤ xd

}
(7)
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and it can be estimated by the subsampling approximation

Ĝn (x) =
(
n
b

)−1 S∑
s=1

I

{
T̂ s

b,1 ≤ x1, T̂
s
b,2 ≤ x2, . . . , T̂

s
b,d ≤ xd

}
(8)

where as usual I(·) denotes the indicator function.
As a consequence, for D ⊂ {1, . . . , d}, the distribution of the maximum of the

test statistics, let’s say Hn,D (x), can be estimated by the empirical distribution

function Ĥn,D (x) of the values max
{
T̂ s

b,j, j ∈ D
}

, that is

Ĥn,D (x) =
(
n
b

)−1 S∑
s=1

I

{
max

{
T̂ s

b,j , j ∈ D
}
≤ x

}
(9)

and the quantile of order 1 − α can be estimated as

ĉL (1 − α) = inf
{
x : Ĥn,D (x) ≥ 1 − α

}
. (10)

The choice of the subsampling as resampling technique can be justified as
follows. Firstly, the method does not require any knowledge of the specific struc-
ture of the data and so it is robust against misspecifications, a key property when
dealing with artificial neural network models. Moreover, the procedure delivers
consistent results under very weak assumptions. In our case, by assuming: (i)
b → ∞ in such a way that b

n → 0, as n → ∞, (ii) conditions that guarantee
asymptotic normality of ŵn are fulfilled [11], (iii) smoothness conditions on the
test statistics T̂n,j [12], the subsampling approximation is a consistent estimate
of the unknown (multivariate) sampling distribution of the test statistics [10].
Observe that, the number of subsets of length b which can be formed out of
a sample of size n grows very fast with n. Therefore usually, just B random
selected subsets are considered for computing the subsampling approximation.

Clearly, the main issue when applying the subsampling procedure lies in
choosing the length of the block, a problem which is common to all blockwise
resamplig techniques. Nevertheless, [8] proposed a number of strategies to select
b and theorems that ensure that the asymptotic results are still valid for a broad
range of choices for the subsample size.

4 Numerical results

To illustrate the performance of the proposed model selection procedure we use
simulated data sets generated by models with known structures. The aim is to
evaluate the ability of the test procedure to select a proper set of explanatory
variables for the given data generating process. For the experimental setup we
assume n = 300, b = 100, r = 2, B = 1000, α = 0.05. The hidden layer size of
the neural networks has been determined by using the test procedure proposed
by [6] and all neural network models have been estimated by using a square loss
function. The simulated data sets have been generated by the following models.
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The first model (Model M1) assumes that Y depends on 10 explicative vari-
ables {X1, X2, . . . , X10} but just variables {X3, X4, X5, X6} are relevant to the
model, that is,

Y = 3ψ (2X3 + 4X4 + 3X5 + 3X6) + 3ψ (2X3 + 4X4 − 3X5 − 3X6) + ε

where ε ∼ N(0, 0.7) and ψ is the logistic activation function, X = (X3, X4, X5, X6)T

is a vector of multivariate Gaussian random variables with zero mean, unit vari-
ance and pairwise correlation equal to 0.5. Clearly, a neural network with logistic
activation function, four input neurons and two hidden neurons is a correctly
specified model and no misspecification is present.

Table 1: Model M1. Results of the multiple testing procedure (n = 300, b = 100,
r = 2, B = 1000, α = 0.05). Figures in bold refer to the rejection of the
corresponding hypotheses Hrj .

j T̂n,rj rj T̂n,rj − ĉ1 T̂n,rj − ĉ2 T̂n,rj − ĉ3
1 4.1649 4 2.8040 – –
2 1.0315 5 -0.3295 0.5303 –
3 1.0105 3 -0.3505 0.5092 –
4 0.9680 6 -0.3930 0.4667 –
5 0.0142 8 -1.3468 -0.4871 -0.1836
6 0.0038 7 -1.3571 -0.4975 -0.1940
7 0.0025 9 -1.3585 -0.4988 -0.1952
8 0.0019 10 -1.3590 -0.4993 -0.1958
9 0.0016 2 -1.3594 -0.4997 -0.1962
10 0.0010 1 -1.3599 -0.5002 -0.1967

The results of the multiple testing procedure for variables selection are re-
ported in Table 1. After the first step, the procedure rejects the hypothesis that
variable 4 is not relevant and accepts all others hypotheses. At the second step,
variables 5, 3 and 6 are recognized as relevant, as well. At the third step, the
remaining variables are recognized as not relevant and the procedure stops.

For the second model (Model M2) again, we assume that Y depends on 10
explicative variables {X1, X2, . . . , X10} but just variables {X3, X4, X5, X6, X7}
are relevant, that is

Y =
(
10 sin (πX3X4) + 20 (X5 − 0.5)2 + 10X6 + 5X7 + ε

)
/25

where X = (X3, X4, X5, X6, X7)T is drawn randomly from the unit hypercube.
Again, the procedure is able to correctly identify the set of relevant variables

in three steps, as clearly shown in Table 2.
Observe that a multiple step procedure is necessary. In both cases at the

first step some variables were incorrectly classified as not relevant to the model.

177



Table 2: Model M2. Results of the multiple testing procedure (n = 300, b = 100,
r = 2, B = 1000, α = 0.05). Figures in bold refer to the rejection of the
corresponding hypotheses Hrj .

j T̂n,rj rj T̂n,rj − ĉ1 T̂n,rj − ĉ2 T̂n,rj − ĉ3
1 0.2422 3 0.1951 – –
2 0.2019 4 0.1548 – –
3 0.1750 5 0.1280 – –
4 0.1591 6 0.1120 – –
5 0.0400 7 -0.0070 0.0354 –
6 0.0002 1 -0.0470 -0.0045 -0.0020
7 0.0001 2 -0.0470 -0.0045 -0.0020
8 0.0001 8 -0.0470 -0.0045 -0.0020
9 0.00009 10 -0.0470 -0.0045 -0.0020
10 0.00006 9 -0.0470 -0.0045 -0.0020
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