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Abstract. Attentional focusing can be implemented with a neural field
[1], which uses a discharge rate code. As an alternative, we propose in
the present work an implementation based on spiking neurons. Such im-
plementation will allow to investigate the possible contribution of a spike
time based code with a network of leaky integrate-and-fire neurons. The
network is able to detect and to focus on a stimulus even in the presence
of distractors. Experimental data show that this behavior is very robust
to noise. This process implements an early visual attention mechanism.

1 Introduction

The attentional process is a key concept for biological vision efficiency [2] and
understanding such process brings new solutions and approaches in artificial
vision (see [3] for a review). In a recent work, Rougier & Vitay [1] described
a model of attention based on the emergent properties of a neural population,
which proved experimentally to be very robust.

Since neural fields rely on a rate code rather than on a precise spike-timing
code, we propose here an implementation of the neural population described in
[1] with a spiking neural network. Spiking models discretize the information as
only spikes are propagated and thus we will be able to investigate the contribu-
tion of this process. The neural model and the network are described in Sect. 2.
We evaluate the robustness of our network with noise and distractors. Results
are detailed in Sect. 3.

2 Network description

Rougier et al. use the Continuum Neural Field Theory (CNFT) to describe the
activity of their neural population. The CNFT can characterize the dynamic
of pattern formation for a neural field with lateral inhibition. The authors
use the dynamic properties of this neural population to focus and follow an
input stimulus. Their experiments rely on the spatio-temporal continuity of the
stimulus during the simulation.

Instead of using a rate code, as in neural field, the network described here is
composed of Leaky Integrate-and-Fire (LIF) neurons that emit their spikes at a
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Fig. 1: Network structure: two 2D neural maps, the Input map convert input
image in spike trains send to Focus map through a Gaussian connection. Focus
map has self connections which implement a lateral inhibition.

precise time. The membrane potential Vi of neuron i is given by the following
differential equation:

{
τ V̇i = gleak(Vi − Eleak) + PSPi(t) + I(t), if V ≤ ϑ
spike and reset V otherwise

(1)

where τ is the membrane time constant, gleak is the membrane leak conductance,
ϑ is the threshold and Eleak is the membrane resting potential [4]. I(t) represents
the influence of a external input current (see [4]). The PSP(t) is the synaptic
input function, describing the influence of incoming spikes on membrane poten-
tial. As in [5], there is no synaptic conductance in our model. Formally, outgoing
PSPs from neuron j are denoted by:

Sj(t) =
∑

f

δ(t − t
(f)
j + dj) (2)

where δ(x) is the Dirac distribution, with δ(x) = 0 for x �= 0 and
∫ ∞
−∞ δ(x)dx = 1,

t
(f)
j is the spike emission time and dj the synaptic delay. The influence of

incoming PSPs on membrane potential is given by the simple relation:

PSPi(t) =
∑

j

wi,jSj(t) (3)

The network is a set of two neural map (2D neural layer): an Input map (IM)
and a Focus map (FM), see Fig. 1. Depending on the choice of gleak and Eleak

values, a spiking neuron can either integrate the information over a predefined
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Fig. 2: Left: Mean activity of the Input map when the background is noisy
(σ = 0.5). The activity along the circular path of the stimulus is slightly higher
as it can be seen on the bottom projection. Right: Path followed by the FM
activity centroid with a background noise (σ = 0.5).

temporal window or act as a synchrony detector, i.e. emitting spikes when inputs
are condensed in a small period of time. IM neurons behave as integrator and
FM neurons as synchrony detectors.

The IM translates an input image into spike trains. Each neuron is associated
with a pixel, i.e. the pixel luminance determines the input term I(t) of the
corresponding neuron. Each IM neuron is connected to FM neurons through a
Gaussian mask. A mask is a static weight matrix and defines a generic projection
from one neural map to another. The weight matrix values of the Gaussian mask
can be viewed as the parameters of a Gaussian image filter.

The FM is self-connected with a difference of Gaussian (DoG, also known
as Mexican hat) connection mask, which excites adjacent neighbors and inhibits
distant ones. This self-connection alone is not sufficient to maintain a self-
sustained activity. For this purpose, it needs the IM spikes to keep an ongoing
activity. At time t, the stimulus generates an activity on FM and, when at t+Δt
the stimulus has moved, the activity on FM follows as long as the stimulus stays
in the excited part of this activity.

The simulation is handled in our clock-based simulator. This simulator pro-
cess only active neurons, i.e. neurons integrating PSPs [6]. The simulator version
used in this paper is sequential and is not distributed.

3 Experimental results

We use an experimental set similar to [1]: a stimulus follows a circular path on a
30x30 pixels input image with either noise or distractors in the background. The
stimulus is a Gaussian patch with an amplitude of 1. Distractors are exact copies
of the stimulus but they lack spatio-temporal continuity, as they constantly
appear and disappear in random places without following a continuous path.
The added noise is assumed to be independent and drawn from a zero-mean
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Fig. 3: Left: error level when the stimulus is presented along with distractors
(0, 1, 2, 3, 5, 10 and 25). The dark red bars are for Input map and the light
green ones are for the FM. Right: error level when the input image is noisy, the
x-axis display the different values of σ (0.0, 0.1, 0.25, 0.5, 0.75 and 1.0). Same
color coding as the left part.

Gaussian distribution with different variance levels σ. Consequently, the I(t)
term of Eq. 1 can be express as:

I(t) = G(x, y; θ(t)) + η (4)
η ∼ N(0, σ) (5)

where G(x, y; θ(t)) describes the circular path of the Gaussian patch.
The network is bootstrapped with an input image containing only the stim-

ulus (as in [1]) until the first spikes appear on the FM (usually 20 computations
steps). Then, the stimulus begins to move in a noisy background or among
distractors. Each image is presented during 10 computations steps.

To validate the performance of the network, we compute the distance between
the stimulus center and the centroid of the activity. The activity centroid is
defined as the centroid of all emitted spikes by the FM during the integration
steps of the image presentation (see Fig. 2-right and 3).

The errors of FM remain low even in the presence of high background noise,
as shown in Fig. 2-left. The IM is more sensitive to noise or distractor presence
whereas the FM keeps a constant error level and is robust to perturbation. One
can note that on Fig. 3, in the conditions of small number of distractors or
low noise level, the error of FM is higher than the error on IM. This effect is a
result of the discretization induced by the small size of the input image and it
is reduced when the image resolution is increased.

The implementation used in this paper is quite fast since one computation
step takes from 1 to 9 milliseconds, depending on the overall activity of the
network. Thus, the network can process up to 100 images per second on a Intel
Core2Duo at 1,8 GHz. These values are not so surprising because our network is
small, roughly 2,000 neurons, but when the image size is increased the network
scales well [7].

388



4 Conclusion

The presented network of LIF neurons is able to focus on a target stimulus and
stays focused even when the stimulus moves. Noisy background or distractors
have only a small influence on the behavior of the network. Our choice of a
neural model without synaptic conductance prove to be efficient for achieving
fast computation time.

The experimental results are close to those observed with a neural field [1].
However, some important differences can be emphasized, such as the filtering
done by the Input map neurons. The lowest luminance values are not processed,
due to the discrete nature of spiking neurons. Only above threshold information
is propagated into the network. This reduces the computational load of the
overall network.

Another difference concerns the complexity: a neural field with DoG lateral
connections implements a O(n) algorithm for each spatial position considered in
the discretized equations1. Our network is also in O(n) (see [8] for a complexity
analysis of clock driven algorithms), but only the active neurons are processed.
Only a small set of neurons are active (i.e. process PSP) at each computation
step, thanks to the threshold mechanism of the Input neurons.

This network implements an early visual attentional mechanism and can be
used in more complex architectures. We work on a larger spiking neural network
[6], which uses this focus process to implement covert attention [7]. This network
seems suitable for a real-time implementation in robotic frameworks.
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1for a n x n connectivity filter and only if this filter is separable.
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