ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

Design of Oscillatory
Recurrent Neural Network Controllers
with Gradient based Algorithms

Guillaume Jouffroy
AT laboratory, University Paris 8, gj@ai.univ-paris8.fr

Abstract. In this paper we address the question of the search of param-
eters value for recurrent neural networks to have an oscillatory behavior.
A generalized partial teacher forcing is formalized when target signals are
not all available. The drawbacks of these algorithms are covered, and a
modified version is proposed toward a better general hybrid partial teacher
forcing algorithm. The scope of shaping the oscillator is addressed.

1 Introduction

It is a difficult problem to obtain a stochastic learning rule to find parameters
such that a Recurrent Neural Network (RNN) behaves as an oscillator, as the
bifurcation phenomenon and the nonlinearities of the models arise. This may be
seen by the relatively limited literature on the subject. Indeed beside analytic
methods, for a lot of RNN oscillatory controllers, a priori parameters estimation
or genetics algorithms (for e.g.[1]) are used, and in most of the works which
tackle the question of a learning algorithm, algorithms can only be applied to
a restricted neural architecture [2]. An interesting approach, which however
does not directly concern the oscillatory parameters search, can be found in [3].
This work deals with the interesting idea of “shaping” the oscillatory signal we
mentioned above, using reinforcement learning in the feedback.

The gradient descent based technique applied to the learning of continuous
signals is a good candidate to build up an oscillatory RNN controller. Indeed
there are several variations to optimize the search, whether it is in computation
complexity [4] or in search speed with modified direction search principles [5].

This paper is structured as follows. In the second section we present how a
RNN can be trained to produce oscillations, using a gradient descent algorithm
with the so called “teacher forcing” principle. Then, in the third section we show
how the need for the teacher signals can be reduced to a general formulation. In
section four we discuss the drawbacks of this method together with new ideas
about how convergence may be better obtained, and we give an example toward a
generalized hybrid model. We discuss how the portrait of the resulting oscillator
can be modified. In the last section we give concluding remarks.

2 Gradient descent with teacher forcing

For all the neural networks let us consider a simple fully connected RNN of the
form

% = f(x, W), (1)

ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

where x € R™ is the state vector of the network, and W € R"*" is the matrix of
the weight connexions between neurons (w;;being the connexion from neuron 4
to neuron j). Fully connected means every neuron is connected to all the others,
and also self-connected (w;; # 0). Each neuron model of this network is simply

f(x, W) =—(1/7)(x + Ws(x)) +1, (2)

with s(x) a squashing function such as tanh(z), 7 € R™ a time constant vector
and I € R™ an external input which we set for now as 0. It has been shown by
[6] that the external inputs can be used to control the frequency of the oscillator.

The purpose of the learning algorithm is to match after transient, the state
x of the network with a target “teacher” signal vector x*, by means of adapting
the weight matrix W. In the usual case the learning is achieved when an error
criterion E, E € R" is less or equal than a minimum € € R, e ~ 0

E:%(xfx*)o(xfx*)<e, (3)
the operator o being the Hadamard product.

Each component z} of the teacher vector x* is of the form z} = sin(t + ¢;).
It is known that as noted for example in [2], there are restrictions between the
phase latencies ¢; of the teacher signals. For the 2 neurons case, when a phase
latency of 0 or m between teachers is approached, the error E correction time
goes to infinity, i.e. convergence is not possible. One can easily see that for a
two neurons network, a phase latency of = would plot a straight line in the phase
plane which shows non-uniqueness of solutions. With one more dimension, we
obtain a circle-like trajectory which is solvable by the three neurons network.
For any phase latency between output neurons, one should use a combination of
¢; which lets the system find a solution. For a RNN of n = 2 neurons, we will
choose ¢1 = 0 and ¢2 = 7/2, n = 0.1, which gives the fastest convergence speed,
in at most 300 time steps.

During the learning process the output of each neuron is replaced by the
target signal, which means the neurons are thus independent from each other
[7]. An other option is to only provide the target signals for the self connections,
i.e. the connections of weight w;;. In this case more computation is required
as neurons have to be trained all together. The choice rely only upon technical
considerations. Forcing the network with the oscillatory targets prevents the
instability of the gradient [8].

The weight wy, is adjusted in the following way

n

_ OF |

Wpq = _772 %Zp(p (4)
i=1 "

with 7 € R is the learning rate, which we set as n = 0.1. z € R™"” ig the
sensitivity of the state of the system with respect to the weight matrix W,
whose elements for the teacher forcing gives

; Ofi(x(W), W) 1

qu - qu - 7;qu + S(h’j (t)) (5)

ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

The above equation should be solved from the equation (1) being forced, i.e.
the target signal 2} in place of the input and/or output of the neuron 4. There is
a redundancy in solving this same differential equation for every weight. Such a
redundancy can be reduced using the Green’s function method proposed in [4].

The generated signals from the resulting network are not sinusoidal, but
they are bent because of the non-linear squashing function s. To obtain a better
signal shape, one should use a squashing function which is as linear as possible
in € [—1;1] but still continuous. Note that the quality of the signal’s shape
is sensitive to the integration step. We can also replace this function by a
purely linear one. However the weights should be constant, otherwise the purely
conjugate eigenvalues can easily escape from the imaginary axis, which means a
loss of the limit cycle.

3 Partial teacher forcing

In general in robotics we can not know the teacher signal for every neuron of the
network, but we can only provide the feedback signal of the output neurons.

The sensitivity equation (5) can be written for the general case in a matrix
form

z=J¢, (M)z + I, (M), (6)

where J¢ (M) and Jg, (M) are the jacobian matrices of the function f respec-
tively to x and w at the point M. In the teacher forcing case (5) we have

z=—-1z+J¢, (M), (7)
I being the identity matrix. For convenience z is the matrix of elements z;q,
i being the column index representing the ith neuron, and the indices pq for
the line vectors, ¢,p,q € [1;n] of wyy, the weight matrix element of W (
0/ Owpg).
If we can only partially teacher force the network, i.e. we provide a target
signal(s) =7 only for some neuron(s) 4, the sensitivity equation (5) in the general
case can be written as

i
Zpqg =

n
Tt By = D ap e 4 S [Bes®) + es(@)].)
j=1
with 1 < 4,p,g < n. a; = b; = 0 and ¢; = 1, when j is a neuron output,

a; = b; = 1 and ¢; = 0 otherwise. ¢4 = 1 if i = ¢, 0 otherwise, or in the

context of the matrix form (6), with the present neuron model, the components

of Jg, = A read

Os(x;)
Lj

with a;; = 1 when ¢ = j, 0 otherwise, b;; = 1 when ¢ is not a forced neuron,
0 otherwise. Jg, = B has the same form as z and its elements are such that
Bi, =0 when i # q, B}, = s(x}) if p is a forced neuron, B}, = s(x,) otherwise.

Aij = —aij + bjjwy;

ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

We can also notice that even if the error term (3) decreases exponentially, the
weights take an infinite time to become stable, though the values obtained give a
reasonable oscillatory behavior. This problem has some stability drawbacks for
the resulting system. Typically, the non-forced neuron(s) change(s) amplitude
throughout the learning process whereas the forced neuron(s) reach(es) its(their)
target fast. The weights convergence can also be infinite when the phase of
teacher signals are close even if there is a sufficient number of neurons to solve
the problem with the teacher forcing algorithm.

In a perspective of relearning a different oscillatory behavior, or in case of
injury, we should notice that with this algorithm, for some solutions, not all
neurons are used. This means algorithms such as pruning can not be used. The
non-forced neurons have also to be initialized to a non-zero state so that they
can be used (otherwise the learning equations give zero all the time), or with
random input weights.

4 Toward an hybrid partial teacher forcing

The partial teacher forcing has two drawbacks we can address here: weight
convergence and no use of all neurons.

If we add a constraint to the non-forced neurons such that they do not
compromise the convergence of the forced neurons to their target signal, and
reach a reasonable and stable amplitude, both problems can be dealt with. The
idea is to split the error function, in two different error functions, one for the
neurons which have to match a target, and one for the non-forced neurons. So
the error would be

7

Jo %(xz —a)? if i is a forced neuron (10)
B £y otherwise

The error of the non-forced neurons Ej; needs to include characteristics of
the forced neurons, i.e. this error represents a criterion of “correlation” in a wide
sense. There are a lot of possibilities concerning this criterion (relative distance,
angle difference. ..). As an example we choose for a network of n = 2, the neuron

2 being forced

By = 2 (x"x)? (11)

2

One can easily see that all the components g—f: are already computed else-
where in the learning process. Here again = 0.1. Note that these error elements
are calculated with the forced equations of the system (1). Fig. 1 shows the evo-
lution of the weight matrix W during the learning process. The weight elements
are all stable after transient and the system is robust to the perturbation of a
weight. The convergence takes at most 2500 time steps, depending on the initial
conditions. The non-forced neuron reaches the same stable amplitude as the
forced one. The matrix weight obtained is W = [1.31 1.27; —1.19 1.13].
The existence of a limit cycle can be proved with the Dulac’s criterion and the
eigenvalues. The network will converge to the limit cycle with initial conditions

10

ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

) e
0 200 1000 15300 Zood

time

Figure 1: Modified partial teacher forcing: weights are stable after transient,
and only at most 8 times slower than the teacher forcing with all target signals
known.

on x being up to twice the amplitude of the target signals, without the need to
learn to the system a suitable attractive vector field contrary to [2]. Eq. (10)
makes the limit cycle to be a circle. This circle can easily be stretched in any
direction to change the phase relationship between neurons, using in place of
(10), A-orthogonality instead of orthogonality, i.e. Ej = 3 (X7 Ax)?.

The circle is stretched/contracted in the directions of the eigenvectors of A, if
the eigenvalues are greater/less than one. This 'shaping’ of the limit cycle means
to change the phase relationship between quiescent neurons. This is different to
many works, where the phase relationship between oscillatory neurons are dealt
with, but here we have no explicit phase information.

5 Shape of the oscillator

We already mentioned the fact that the signals generated after the learning
process may be altered in their shape because of the pseudo-linear part of the
squashing function s. This idea can be used to modify the shape of the oscillator
signals in an on-line manner. For example if we let s(z) = tanh(2/(1+e~**)+1,
we can change the portrait of the oscillator, increasing «, changing neurons
signal from sinusoidal to triangular. However it should be noted that it has the
drawback of getting an increase of the expected amplitude, because we change
the point on s where = is maximum. When «a < 2, s become linear, and thus
the limit cycle is no more guaranteed. « should also not be too big (e.g. 250),
as s will tend to a step function which contains a discontinuity. The shape of
the oscillator’s portrait can also be modified if we change the time constants 7;.
If they are identical, a change will only affect the speed of the orbits. However
a change on a particular time constant will affect the amplitude of its neuron
i. The amplitude of the other neurons will all get a roughly equivalent loss of

11

ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

amplitude, but the amplitude of the neuron ¢ will be much more decreased.

6 Conclusion

Many works concerning oscillatory controllers in the robotics field deal with
evolutionary process, and this leaves several dynamic processes in the unknown.
We have presented the teacher forcing algorithm in the usual way together with a
general matrix formulation, for the design of oscillatory recurrent neural network
controllers. We have then given a generalized formulation of how to use a partial
teacher forcing when a target signal is not available for all neurons and we have
shown how to reduce its drawbacks. The error is split in two different types of
functions: the error for the forced neuron to match its target, and the error for
the non-forced neuron, which is a “correlation” factor with the forced neuron.
Our results show that indeed, contrary to the partial teacher forcing, during
the learning, stable weights are found in a finite time, and that the non-forced
neuron reaches the same stable amplitude as the forced one. More results need
to be done to see if this method may be applied to arbitrary functions. We also
address the question of shaping a default oscillator to its need, instead of the
design of a specific oscillator. The methods presented here demonstrate that
there are simple ways to be able to design oscillatory controllers without loosing
the understanding of the dynamics that arise, which are hard to see in the widely
used evolutionary methods for such a task.

References

[1] Raffaele M. Ghigliazza and Philip Holmes. A minimal model of a central pattern generator
and motoneurons for insects locomotion. SIAM Journal on Applied Dynamical Systems,
3(4):671-700, 2004.

[2] Fu-Sheng Tsung and Garrison W. Cottrell. Phase-space learning for recurrent networks.
Technical Report CS93-285, Dept. Computer Science and Engineering, University of Cali-
fornia, San Diego, 1993.

[3] Takeshi Mori, Yutaka Nakamura, Masa-Aki Sato, and Shin Ishii. Reinforcement learning
for cpg-driven biped robot. Nineteenth National Conference on Artifical Intelligence, pages
623-630, 2004.

[4] Guo-Zheng Sun, Hsin-Hsiung Chen, and Yee-Chun Lee. Green’s function method for fast
on-line learning algorithm of recurrent neural networks. In John E. Moody, Stephen Jose
Hanson, and Richard Lippmann, editors, Advances in Neural Information Processing Sys-
tems (NIPS), volume 4, pages 333-340. Morgan Kaufmann, 1991.

[5] Nicol N. Schraudolph and Thore Graepel. Towards stochastic conjugate gradient meth-
ods. In Proceedings of the 9th International Conference on Neural Information Processing
(ICONIP °02), Singapore, 2002.

[6] Robert Haschke, Jochen J. Steil, and Helge Ritter. Controlling oscillatory behavior of a
two neuron recurrent neural network using inputs. In Proc. of the Int. Conf. on Artificial
Neural Networks (ICANN), Wien, Austria, 2001.

[7] Peter F. Rowat and Allen I. Selverston. Learning algorithms for oscillatory networks with
gap junctions and membrane currents. Network, 2:17-41, 1991.

[8] Kenji Doya. Bifurcations of recurrent neural networks in gradient descent learning. IEEFE
Transactions on neural networks, 1994.

12

