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Abstract. We present an algorithm which partitions a data set in
two parts with equal size and experimentally nearly the same distribution
measured through the likelihood of a Parzen kernel density estimator. The
generation of the partition takes O( 1

2
N(N − 1)) operations (N number of

data) and is 2 orders of magnitude faster than the state of the art.

1 Generating an equi-distributed bipartition

1.1 Problem and applications

We consider the problem of generating a homogeneous partition of a data set,
that is a partition such that each part has the same distribution as the whole.
We focus here on bipartitions, which are partitions containing two parts with
equal size (the number N of data is even) (Figure 1a).

This problem has been studied under the name ”data squashing” [2] to sum-
marize massive data sets in a way which preserves statistical relationships among
variables better than random sampling; in biostatistics to select patients for
treatment and control groups [5]; and in Machine Learning as a way to improve
the estimation of model complexity [7].

1.2 Inspiration from two-sample tests

To check whether two groups are drawn from the same distribution, one can
use a two-sample test. Suppose a blue-red bipartition of the data. Several
two-sample tests are based on building a proximity graph of the data1 and
counting the number of mixed edges, i.e. which have one red and one blue
vertices. The higher this number, the higher the probability that both red and
blue data are drawn from the same distribution. Then the null hypothesis that
both parts are homogeneous is rejected if the number of mixed edges is too
small. Friedman and Rafsky [3] proposed a test based on the Minimal Spanning
tree. Recently, Rosenbaum proposed the ”cross-matching” test [6], which uses a
minimal distance non-bipartite matching [4].

The homogeneous bipartitionning problem can bring down to build a bi-
partition of the data which succeeds in passing a multivariate two-sample test.
One way to do this is to generate several random bipartitions and keep the one

1A proximity graph connects two points if they are close to each other with respect to some

measure of closeness. Example of such graphs are the Minimum Spanning tree, the Nearest

Neighbor graph or the Delaunay graph.

259



which succeeds in passing the test. This can take a long time and costs also
much computation to perform the tests. We propose another way to solve the
problem.

1.3 A solution based on Parzen estimators and likelihood

A way to measure how close are the distributions of both parts of a bipartition,
is to build a generative model based on one of the parts, and to use this model
to measure the likelihood of the other one. Then, the higher the likelihood that
one part generated the other, the closer the probability density functions of both
parts.

Consider a set x made of an even number N of points, one half in the blue
set xb ⊂ x and the other half in the red set xr = x \ xb. Suppose a Parzen
density estimator2 pr based on gaussian kernels located at the red points:

∀x ∈ R
D, pr(x, σr) =

2

N

∑

xr∈xr

(2πσ2
r)−

D
2 e

−
(x−xr)2

2σ2
r

Similarly, suppose a Parzen density estimator based on the blue points pb(x, σb).
Let’s suppose the generative model based on the red points is used to explain
the blue points. We wish to maximize the loglikelihood given by:

Lxr
(xb, σr) =

∑

xb∈xb

log(pr(xb, σr)) (1)

The maximum likelihood Parzen estimator of the set xb based on the com-
plementary set xr is obtained for the value σ∗

r :

L∗

xr
= maxσr>0(Lxr

(xb, σr)) = Lxr
(xb, σ

∗

r )

The loglikelihood and maximum likelihood Parzen estimator of the red points
given the blue points can be computed the same way reversing ’r’ and ’b’ in the
above equations.

We propose that an optimal equi-distributed bipartition P ∗ of x should be
one which maximizes the joint loglikelihood of both blue and red σ-optimal
models:

P ∗

br = arg max
Pbr∈P

(

L∗

xb
+ L∗

xr

)

= arg max
Pbr∈P

(L∗

br) (2)

where P = {(xb, xr) ∈ x2| xb ∩ xr = ∅, |xb| = |xr| = N
2
} is the set of all

possible bipartitions.
For each possible bipartition Pbr ∈ P , we need to find the optimal σ∗

b and
σ∗

r of the corresponding Parzen estimators. The number of bipartitions is the
number of way to take N/2 elements from the set of N data: N/2CN . This
number is huge for large N and so the direct maximization of L∗

br is not tractable.
That’s why we study different ways to obtain an approximate solution to this
optimization problem.

2Parzen density estimators can model multimodal and multidimensional density functions.
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2 Approximate solutions

2.1 A hill-climbing method

We can use a hill-climbing method to find a suboptimal bipartitionning by start-
ing from an initial partition, finding the neighborhood partition3 which increases
the likelihood L∗

br and iterating from this locally optimal partition until no in-

crease occurs (Figure 1d). In this case, N2

4
neighbors need to be checked at

each iteration, and a check takes O(N2) operations to compute the likelihood,
times the number T of σ values tested. The number of iterations is bounded
up by the diameter of the exploration space which is N

2
(maximum number of

permutations needed to pass from a bipartition to another one) so the locally
optimal bipartition attainable from the initial one, will be reached in no more
than N

2
iterations. Therefore this approximation algorithm takes O(TN5) at

worst to get a local optimum, but we cannot tell how close this optimum is to
the global one.

We propose hereafter to consider two other approximate solutions: one is
based on the minimal distance non-bipartite matching algorithm; the other is
based on a multidimensional ranking algorithm.

2.2 Towards better solutions

We observe that near optimal bipartitions obtained with the above iterative
algorithm (Figure 1d), tend to spatially alternate blue and red points. This
corresponds to partitions where the sum of the distances between blue points
(resp. red) and their nearest red point (resp. blue), is small.

Such partitions are more likely to succeed two-sample tests based on prox-
imity graphs, as these graphs tend to connect relatively close points, and a high
number of mixed blue-red pairs increases the probability of success.

Why such bipartitions get higher likelihood of being homogeneous can be
explained by the fact that two identical distributions should provide nearly the
same number of points in each area of the space, whatever small this area is.
When coloring in red and blue, pairs of nearest neighbors, we insure that this
is the case for the smallest areas which contain only two points. So this tends
to make both distributions the same, even at small scale. This can be seen also
observing the likelihood expression (1) in Parzen estimators. The smaller the
distance between a reference point and a data point, the higher the contribution
of the exponential term in the sum used to compute the likelihood.

This leads us to study algorithms which build partitions tending to minimize
the distance between nearest neighbors blue-red pairs, without ever computing
the likelihood at each step, so bringing the computation complexity down by two
order of magnitude (O(N2)). It appears these algorithms provide near optimal
partitions anyway.

3Two partitions A and B with equal size, are neighbors if one blue point in A is red in B

and one red point in A is blue in B, all the other points keeping the same color in A and B.
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(a) −L∗ = 19.95 (b) −L∗ = 11.59 (c) −L∗ = 10.84 (d) −L∗ = 10.61

Random O(N) MDNM O(N3) PMR O(N2) Iterative O(N5)

Fig. 1: Bipartitions and their negative loglikelihood on the same set of points.

2.3 The minimal distance non-bipartite matching

A combinatorial optimization algorithm has been proposed by Galil [4] to extract
pairs of vertices in a weighted undirected graph such that the sum of the weights
of the pairs is maximum. It takes O(N3) operations where N is the number of
vertices. This algorithm can be used to get pairs of points close to each other
by using negative pairwise distances for the weights, a convenient bipartition is
then obtained by coloring the vertices of a pair in blue and red (Figure 1b). This
algorithm, called MDNM (minimum distance nonbipartite matching), is used
to build a proximity graph in the cross-matching test [6]. The complete graph
of the data weighted by their interpoint distances is used, which requires O(N2)
additional computation. As this algorithm remains costly, we propose to look
for a graph whose coloring is easier.

2.4 Our method: bipartition based on multidimensional ranking

2.4.1 A multidimensional ranking algorithm

We consider a set x of N points in R
D. The following algorithm proposed in [1]

is originally used for clustering purpose, and provides a chain of points whose
index in the chain can be viewed as a rank order: Select a starting point x1 and
put it in E. Let E = {x1, . . . , xk} be the set of k points explored at iteration
k, with respective ranks 1, . . . , k. At iteration k + 1, select the nearest neighbor
xk+1 of xk among the N−k remaining points unexplored U = x\E, and append
it to E.

2.4.2 Getting the partition

Here we exploit the parity of the rank obtained from the previous algorithm to
get the two partitions Pr and Pb (see algorithm on figure 2). One will contain
the points whose rank is even, the other one the points whose rank is odd. We
call this algorithm PMR (Parity Multidimensional Ranking) (Figure 1c).
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k ← 1;
Pb ← indstart; Pr ← ∅;
E ← indstart;
U ← {1, . . . , N} \ indstart

indcur ← indstart;
WHILE U 6= ∅ DO

indcur ← arg mini∈U (dist(xi, xindcur))

E ← E ∪ indcur;
U ← U \ indcur;
IF k is even
THEN Pb ← Pb ∪ indcur;
ELSE Pr ← Pr ∪ indcur;
ENDIF
k ← k + 1;

ENDWHILE

Fig. 2: PMR partitionning algorithm : a starting point indstart and a distance mea-
sure dist are provided. E and U are the sets of explored and unexplored points re-
spectively. A chain of points is built incrementally appending to the end of the chain,
the nearest point out of it. The parity of the rank of each point in the chain is used to
select the partition Pb or Pr it belongs to.

2.4.3 Complexity

At the kth pass in the ”while” loop (k = 1, . . . , N − 1), it remains to compute
the distance to the N − k unexplored points, which requires O( 1

2
DN(N − 1))

operations. This is 3 order of magnitude less than the iterative approach. All
the algorithms scale linearly with D which only appears in the distance function.

3 Bipartition of a multidimensional uniform distribution

We draw at random sets of N ∈ {10; 50} data points with a uniform density
on the unit D-cube, for D ∈ {3; 5; 10; 20; 50}. For each (N,D) pairs, we draw
10 different sets. For each draw, we compute the joint loglikelihood (2) of the
following bipartitions: N random bipartitions; 1 MDNM bipartition; N PMR
bipartitions starting each at one of the N data points; 1 optimized MDNM
bipartition which consists in running the incremental algorithm starting from
the MDNM partition; 1 optimized PMR bipartition running the incremental
algorithm starting from the best PMR partition among the N obtained. Figure
3 shows the computing time and the average of the loglikelihood for each (N,D)
pairs. The PMR algorithm is implemented in C. The MDNM is generated thanks
to the Galil code [4]. Both algorithms are provided with an N.N distance matrix
although the PMR does not need to compute all the possible pairwise distances.
The time is counted only for the partitionning stage of the algorithms, not for
the generating of the distance matrix.

The PMR algorithm shows better homogeneity than the MDNM and is two
order of magnitude faster. Both PMR and MDNM partitions are improved by
the iterative algorithm, showing they provide only suboptimal solutions. Results
with more data will be presented during the conference.
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D

N P artition 3 5 10 20 50

rand 8.97± 3.0 16.8 ± 2.7 37.0± 4.4 82.4 ± 4.6 247± 26
MDNM 6.21 13.5 31.3 77.4 234

−L∗ 10 MDNMopt 4.16 11.4 29.0 73.5 222
P MR 4.71± 0.47 12.4 ± 0.68 50.6± 1.2 75.1 ± 1.7 235± 17

P MRopt 4.16 11.4 29.0 73.6 222

rand 31.5 ± 5.6 66.1 ± 6.7 163 ± 7.8 367± 10 1060± 110
MDNM 33.8 67.7 164 366 1070

−L∗ 50 MDNMopt 8.37 35.9 127 322 964
P MR 11.8 ± 1.2 39.9 ± 1.7 134 ± 2.3 331± 3.1 1010± 120

P MRopt 8.17 35.5 127 321 964

time(ms) 10 MDNM 28.9 ± 3.8
P MR 0.321± 0.087

time(ms) 50 MDNM 329± 22
P MR 1.16± 0.086

Fig. 3: xx ± yy: xx is the average negative loglikelihood over all the experiments at
(N, D) (the lower xx, the higher the homogeneity), and yy is the average of the 10
standard deviations computed over the N tests for the random and PMR partitions.
Computing time does not depend on the dimension.

4 Conclusion

We proposed an efficient algorithm to get a homogeneous bipartition from un-
labelled data, whose complexity is O(N2) while the best heuristic costs O(N3).
As highlighted in [7], we foresee such homogeneous bipartitions could be usefull
for cross validation purpose in Machine Learning: only one draw of such a parti-
tion could replace K draws of random K-folds, leading to learn only twice over
N/2 data, rather than K times over N/K data, with lower bias and variance
expected in the estimate of the model complexity. This would be interesting
when the complexity of the learning algorithm dominates the complexity of the
partitionning. It could also be possible to get homogeneous parts with different
sizes by slightly modifying the algorithm. At last, another issue would be taking
into account the output variable in a supervised setting.
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