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Abstract. The aim of this paper is to enhance the performance of a reinforcement 
learning game agent controller, within a dynamic game environment, through the 
retention of learned information over a series of consecutive games. Using a 
variation of the classic arcade game Pac-Man, the Sarsa algorithm has been utilised 
for the control of the Pac-Man game agent. The results indicate the use of state-
action value scaling between games played as successful in preserving prior 
knowledge, therefore improving the performance of the game agent when a series 
of consecutive games are played.   

1 Introduction 

Digital games provide an interesting test-bed for machine learning research due to the 
characteristically non-deterministic, dynamic nature of their environments [1]. In 
particular, the dynamic environments presented by predator/prey style games offer the 
advantage of being easily decomposed into a finite set of states, each with an 
associated set of reward values [2]. In order to generate reactive and believable game 
agent behaviours the use of machine learning techniques is required. However, the 
effective use of such algorithms is restricted by a number of requirements including 
the necessity for game agent behaviours to be learned in response to a changing game 
environment [1], [3]. Subsequently, by incorporating prior knowledge about the 
learning task into the learning algorithm and knowledge representation used, the 
performance of the game agent may be improved [4], [5].  
 Although a large variety of techniques exist within the machine learning 
domain, reinforcement learning provides an approach to agent-based learning which 
focuses on an agent’s interactions with its environment [6]. As such, reinforcement 
learning provides a learning methodology appropriate for use within digital game 
environments and comprises a set of algorithms and techniques which involve 
learning a sequence of actions in order to maximize an accumulated discounted 
reward received from the environment over a period of time. Subsequently, a control 
policy can be learned, through an agent’s exploration and exploitation of the 
environment, without requiring explicit training from a domain expert [4], [6], [7], 
[8]. For a comprehensive discussion on reinforcement learning, please refer to [6]. 
 Within the academic digital games research literature, reinforcement learning 
techniques have been applied to a variety of games in order to learn control policies 
for game agents. Research conducted includes the Sarsa(λ) generation of a near-
optimal control policy for game agents in the fighting game “Tao Feng” [8], and both 
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Sarsa and Sarsa(λ) based game agent controllers within a variation of the game “Pac-
Man” [5]. Similarly, Sarsa(λ) has been used to generate a control policy for game 
agent strategies in the game “Settlers of Catan” [4]. By making use of domain specific 
knowledge within both the value function representation and learning algorithm used, 
enhanced game agent control has been observed [4], [5].   
 Based on previous research conducted into reinforcement learning-based control 
of a game agent within a dynamic, 2D game environment [5], the objective of the 
research outlined in this paper is to improve the performance of a game agent over a 
series of games played consecutively by retaining information about the learning task 
between games. Experiments regarding the retention of state-action values between 
successive games have been performed, including investigations into the use of linear 
scaling as a mechanism for retaining learned information over a series of games. 
Details of the experiments will be presented, along with analysis of the results 
obtained by the game agent controller, discussed in terms of the game related 
objectives of the game agent.       

2 Methodology 

The game environment employed was a variation of the classic arcade game Pac-Man 
[9], in which the primary objective for the player is to achieve as high a score as 
possible by manoeuvring the game agent (Pac-Man) around a 2D, grid-based 
environment in order to consume dots while at the same time avoiding being eaten by 
four opponent agents (ghosts). Consisting of a 20x20 grid of game-dependent 
features, including walls, dots, energizers, tunnels, inaccessible spaces (i.e. grid cells 
for the starting position of the opponent agents), and empty spaces (i.e. grid cells 
where a dot/energizer has been consumed), the configuration of features establishes a 
single game level. Initially populated with 180 dots (176 dots & 4 energizers), a single 
level has been used throughout all experiments performed. Within the course of a 
game, if the game agent consumes an energizer the game state of the opponent agents 
temporarily changes from the default Attack state to the Evade state, during which the 
game agent may eat the opponent agents. The duration of the Evade state has been 
predefined as 300 simulation steps, which may be further reset to a maximum 
possible duration of 300 simulation steps each time one of the remaining energizers is 
consumed within the 300 simulation steps. If an opponent agent eats the game agent 
while in the Attack state, the game agent loses 1 out of 5 lives. Eaten agents are 
regenerated within the inaccessible spaces, with the game state of opponent agents 
being reset to the Attack state. For both the game agent and opponent agents, moves 
may be made in the North, South, East and West directions. A series of moves were 
randomly pre-generated and used during game-play for each of the opponent agents, 
thus preventing the learning algorithm from simply learning a deterministic set of 
movement patterns for the opponent agents. To allow for direct comparisons of games 
played, the game agent has been restricted to a maximum of 1000 moves per game. A 
game ends when the number of game agent’s lives has reached 0, the total set of dots, 
including energizers, has been consumed, or the game agent has reached the 
maximum number of moves permitted. For the level used within the experiments 
presented, a maximum possible score of 2680 may be achieved by the game agent. 
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 During each game played the choice of moves for the game agent was made 
using the Sarsa control algorithm. By decomposing the game environment into a 
20x20 grid, each grid cell was represented by the control algorithm as a state, with 
actions corresponding to the 4 possible moves. Due to the finite number of resulting 
state-action pairs, the value function, Q(s,a), was represented as a look-up table. 
Every time a move was required for the game agent, the control algorithm was run for 
100 episodes of learning, with the initial state for each episode of learning 
corresponding to the current position of the game agent. For each episode of learning 
performed, 2 steps look-ahead were used and the appropriate state-action values 
updated. The action corresponding to the state-action pair with the highest value for 
the state associated with the current position of the game agent was then chosen as the 
game agent’s move. Throughout all episodes of learning a ε-greedy action selection 
policy was used with a low exploration rate (ε = 0.1) in order to maintain a high 
degree of exploitation of learned state-action pairs.  
 For the experiments presented in this paper two series of 20 consecutive games 
were played. In the first game played in each series, the initial values for the state-
action pairs were generated randomly with values in the range [-0.1, 0.1]. As game-
play progressed, the state-action values were updated by the Sarsa algorithm as each 
movement choice was made for the game agent. In the first series of 20 games played, 
the set of state-action values at the end of gamen were used as the initial set of state-
action values at the start of gamen+1, without further re-initialisation. By contrast, in 
the second series of 20 consecutive games played, the set of state-action values at the 
end of gamen were linearly scaled within the range [-0.1, 0.1] before being used as the 
initial set of state-action values for gamen+1.  
 Throughout the experiments performed a number of game related metrics were 
recorded for each game played, including the score obtained, the number of dots 
consumed by the game agent, and the entropy of the moves made by the game agent 
over the course of a game. In particular, previous research has shown that the entropy 
of the moves made by the game agent may be used to measure the spatial diversity of 
the agent over the game environment. As such, games in which a high entropy value 
is measured indicate a more interesting range of moves have been made by the game 
agent [10]. The normalized entropy of the game agent, En, was obtained using the 
following set of equations: 
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where pi is a count of the number of times a specific grid cell has been visited by the 
game agent and P is the total number of moves made by the game agent during the 
course of a game [5], [10].  
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3 Results 

Based on the results from both series of 20 consecutive games played, Table 1 shows 
the percentage of the maximum possible score obtained together with the percentage 
of the maximum possible number of dots consumed during all games.  
 

 %Score %Dots Consumed 

Num Games No Scaling Scaling No Scaling Scaling 

1 47.57 47.57 99.44 99.44 

2 12.50 43.28 32.22 97.78 

3 26.31 55.22 68.33 100.00 

4 18.47 38.99 45.00 90.00 

5 10.07 43.66 30.00 98.89 

6 11.94 43.84 30.56 99.44 

7 9.51 51.49 23.33 93.89 

8 11.01 37.87 32.78 86.67 

9 14.93 47.57 39.44 99.44 

10 15.11 43.28 40.00 97.78 
11 17.91 46.27 37.22 95.56 
12 13.43 42.35 35.00 95.00 
13 14.37 39.55 26.67 91.67 
14 12.31 47.57 31.67 99.44 
15 10.45 43.84 31.11 99.44 
16 7.84 41.98 23.33 87.78 
17 1.87 43.84 5.56 99.44 
18 5.04 43.66 15.00 98.89 
19 5.41 41.98 16.11 87.78 
20 7.65 39.74 17.78 98.33 

Table 1: Percentage of Maximum Possible Score & Percentage of Maximum 
Possible Number of Dots Consumed 

Correspondingly, Figure 1 illustrates the normalized entropy values calculated for the 
game agent’s moves over both series of games played. From both Table 1 and Figure 
1 it can be seen that the performance of the game agent over a series of consecutive 
games is largely improved when using state-action value scaling between games. 
Although the state-action values change in proportion to the total number of episodes 
of learning, the results indicate the learning algorithm is less effective at retaining 
learned information between consecutive games when no constraint is placed on the 
growth of the state-action values. This may be explained by the lessening impact of 
the set of reward values on the accumulating set of state-action values obtained during 
learning over successive games. By constraining the overall magnitude of the state-
action values using linear scaling between games, information learned during a game, 
encoded by the state-action values, is no longer represented by values that may 
subsume the reward values used during further periods of learning. 
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Fig 1: Normalized Entropy of Game Agent Moves 

Table 1 and Figure 1 also illustrate that the results obtained from the first game in 
each series show a relatively high level of performance by the game agent. However, 
for the series of games played without state-action value scaling, Table 1 shows a 
drop in performance in terms of the percentage of the maximum possible score 
obtained and the percentage of the maximum possible number of dots consumed over 
the remaining games played of approximately 84% and 82% respectively. Similarly, 
Figure 1 shows a drop in the normalized entropy of approximately 40%. By contrast, 
in the series of games played which incorporate scaling between games, the 
performance of the game agent oscillates without a significant drop in the results 
obtained. Again, these results suggest that without the constraint imposed by the use 
of scaling on the growth of the state-action values over a series of consecutive games, 
the effect of the rewards becomes diminished during learning. Conversely, even when 
incorporating state-action value scaling, the results depicted in Table 1 and Figure 1 
also indicate that the amount of new information being learned by the game agent 
between games is somewhat reduced after the first game in the series. Although 
marginal gains and loses in the performance of the game agent are shown, no overall 
increase in performance occurs, which would be expected if the control policy was 
improving over successive games. In particular, the range of normalized entropy 
values over the series of games, illustrated in Figure 1, suggests the control algorithm 
has learned the static features of the game environment, such as the walls and 
inaccessible spaces, as the spatial diversity of the game agent remains consistent over 
the 20 games played. If the dynamic features of the game environment, including the 
opponent agents, dots and energizers, were being repeatedly learned, an improvement 
in the percentage of the maximum possible score would be expected.     

4 Conclusion  

It has been shown that a reinforcement learning controller may be successfully used 
for the real-time generation of game agent moves within a dynamic digital game 
environment, yet the performance of the game agent may deteriorate over a series of 
consecutive games unless constraints are imposed on the magnitude of the state-action 
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values generated. Through repeated learning using a single set of state-action values 
for the duration of all games played, coupled with a fixed set of reward values, the 
accumulation of state-action values reduces the effectiveness of the environmental 
feedback used during learning. Subsequently, the observed results of the game agent 
diminish over the number of games played. One way to limit such an accumulation of 
the state-action values, thereby preventing degradation of the game agent’s 
performance, is through the use of state-action value scaling between games. From 
the experiments presented herein, this technique has been shown to be successful in 
preventing the decline in game agent performance observed over consecutive games 
played without the use of scaling. By providing a uniform basis over the range of 
state-action values used, the effectiveness of the reward values is maintained.  
 In terms of retaining prior information between games, the results of the 
experiments featuring state-action value scaling have shown the preservation of 
information predominantly representing the static features of the game environment. 
Exposing a limitation of the experiments presented, a more generalized control policy 
is required in order to successfully learn both the static and dynamic features of the 
game environment. Further research should be conducted into the use of a more 
suitable, dynamic value function representation and into the decomposition of the 
learning task into separate tasks for both types of features found within a dynamic 
game environment. 
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