
A Method for Time Series Prediction using a
Combination of Linear Models

David Mart́ınez-Rego, Oscar Fontenla-Romero and Amparo Alonso-Betanzos ∗

Laboratory for Research and Development in Artificial Intelligence (LIDIA)
Department of Computer Science - University of A Coruña

Campus de Elviña s/n, 15071, A Coruña - Spain

Abstract. This paper presents a new approach for time series prediction
using local dynamic modeling. The proposed method is composed of three
blocks: a Time Delay Line that transforms the original time series into a
set of N −dimensional vectors, an Information-Theoretic based clustering
method that segments the previous set into subspaces of similar vectors
and a set of single layer neural networks that adjust a local model for
each subspace created by the clustering stage. The results of this model
are compared with those of another local modeling approach and of two
representative global models in time series prediction: Tapped Delay Line
Multilayer Perceptron (TDL-MLP) and Support Vector Regression (SVR).

1 Introduction

The time series prediction problem that will be treated in this work can be
resumed in this expression:

x(t + pγ) = f(x(t), x(t − γ), x(t − 2γ), ..., x(t − (N − 1)γ)), p ≥ 1 (1)

where x represents the stochastic variable to be predicted, t represents time,
x(t), x(t − γ), x(t − 2γ), ..., x(t − (N − 1)γ) are past observations of variable x,
γ represents the size of one delay step, p is the prediction step that is being
predicted and f the goal function to estimate.
Global modeling based approaches have been the most used by machine learning
methods in the past when applied to time series analysis [1]. Global modeling
tries to estimate f adjusting only one model that explains all presented cases.
Several methods based in this philosophy have been presented and commonly
used in the past (Tapped Delay Line Multilayer Perceptron, Recurrent Networks,
Support Vector Regression, Radial Basis Functions, etc).
When a local modeling approach is taken to resolve this problem, the overall
predictive function f is estimated as the union of several local estimators

f (x) =
M⋃

i=0

f̂i(x) (2)

where local estimators f̂i(x) are defined in different regions of the input space.
In recent years several topologies based on local models have been presented,

∗We would like to acknowledge support for this project from INDRA Systems and Xunta
de Galicia (project PGIDIT05DPI082E).

295



achieving good results [2, 3, 4].
In this work time series prediction problem is tackled using a local modeling
approach, called Distributed Local Experts based on Vector-Quantization using
Information Theoretic Learning (DLE-VQIT). The results of this model for three
benchmark series are compared with those achieved by a previous local model-
ing approach proposed in [3] and by two global modeling approaches of neural
networks and kernel methods commonly used: Tapped Delay Line Multilayer
Perceptron (TDL-MLP)[1] and Support Vector Regression (SVR)[5].

2 Description of the model

The proposed method DLE-VQIT is composed of three blocks, as schematically
depicted in Fig. 1:

Z-1

Z-1

x(t) Embedded Space

f

f

Time Delay Line VQIT:
M Neurons

Single Layer Networks:
M Networks

Output

Output

w(2)

w(2)

Z-1

Fig. 1: Structure of the proposed VQIT-DLE

• An embedding layer implemented by a Time Delay Line. This layer embeds
the original one-dimensional time series, x(t), into a reconstruction space.
The output of this layer is a set S of N -dimensional state vectors created
from the input signal, x(t) = [x(t), x(t− γ), ..., x(t− (N − 1)γ)]T , where γ
represents the size of one delay step.

• A Vector-Quantization using Information Theoretic Concepts (VQIT) layer
trained using the learning rule described in [6]. This model takes a physical
approach to solve vector quantization and is less rigid than other classifiers
chosen in previous works [3] [4]. VQIT considers two types of particles,
input vectors and nodes of the network. These particles generate two types
of interactions: attraction between input vectors and the nodes of the net-
work and repulsion between the nodes of the network. These interactions
are represented by a kernel function that decay with the distance, like the
Gaussian kernel. VQIT achieves accurate representations of input spaces
minimizing the divergence between the distribution of the nodes and the
distribution of the data. The input of this network is the pair (d(t),x(t)),
where d(t) is the desired response of the system. In a time series predic-
tion scenario, d(t) = x(t + pγ), where p is a desired prediction step in the
future. To obtain an acceptable training time and a good distribution of
the neurons across the embedded space (see figure 1), the original model
presented in [6] was modified. The following two changes were made:

296



– The original algorithm in [6] has an elevated computational cost for
large sets of training data and big networks (each iteration has a com-
plexity of O(M2N), where M is the number of nodes of the network
and N the number of training patterns). In order to obtain an ac-
ceptable training time with a similar classification accuracy, instead
of training with the whole training set S at each iteration of the al-
gorithm, a random subset of D training data from the original set S
(being D a parameter defined by the user) is taken. The variation of
the algorithm chooses a different random sample of the original set
for each iteration.

– The learning rate α of the system takes variable values. It starts
with high values at the first iterations to move all the nodes of the
system near the input space. At each iteration, this learning rate is
decremented multiplying its previous value by a constant β ∈ (0, 1),
in order to obtain a smooth adjustment of the system once the nodes
are distributed across the input space.

• A set of single layer neural networks. The goal of this subsystem is to fit
a local model for each subspace created by the previous layer. Once the
VQIT is trained, the process below is followed:

1. Calculate, for each vector of S, which is the closest VQIT node or,
in VQIT terms, which is affected by the greatest attraction potential.
For this calculus, the same kernel function (in this case a Gaussian
kernel), as in VQIT training is used.

2. Delete the VQIT nodes with less than η training vectors. These are
useless nodes because they are redundant or lost1 nodes.

3. If there are deleted nodes from step 2, repeat step 1 for the remaining
nodes. This action produces that those vectors belonging previously
to deleted VQIT nodes change its owner; else, go to step 4.

4. For each remaining node of the VQIT:

(a) Construct a training set T with the vectors from S that are owned
by this node and by the vectors of its L closest neighbors. This
selection produces two effects:
– It ensures that each node has enough data to train a local

model with the algorithm selected for this purpose.
– It produces an overlapping between the areas corresponding

to each node. This ensures a smoothing continuity among
neighbor models.

(b) Train for this set, T , a single layer neural network using the
powerful and fast training algorithm in [7]. This algorithm always
obtains the global optimum in a direct (not iterative) manner. In

1A lost node is one that is very far from any vector of the training set.

297



[7] a new cost function, that measures the error committed by the
network before the non linear activation function is applied:

Error =
S∑

i=1

(f
′
(d̄) ∗ ε̄s)2 (3)

where f
′

is the derivative of the neural activation function, d
the desired output, d̄ = f−1(d), ε̄s = d̄s − (wTx + b), w is the
weight vector and b the bias. Therefore, optimal weights can be
obtained solving a system of N + 1 linear equations with N + 1
unknowns.

Once the training of VQIT-DLE model is completed, the system works as
follows:

1. Given a new input vector x(t), supplied by the first block of the system,
the closest node of the VQIT is selected. In this process only x(t) is used
and not the desired output d(t), which is unknown.

2. The single layer neural network associated with the closest node is acti-
vated and supplies the output of the system using vector x(t) as input.

3 Experimental results

The proposed system was compared with a local modeling approach proposed in
[3] which in this work is called Distributed Local Models (DLM), and also with
two commonly used global modeling approaches: Tapped Delay Line Multilayer
Perceptron (TDL-MLP) trained with the Scaled Conjugate Gradient Algorithm
[8] and ε-Support Vector Regression [5].
All methods were run in Matlab 7.0(R14). Specifically, for ε-SVR the Spider
Toolbox 1.71 [9], for TDL-MLP the implementation of the Matlab Neural Net-
works Toolbox and for DLM and DLE an own implementation, were used. In
order to make the comparisons three benchmark time series were employed:
Henon [10], Lorenz [10] and the Dow-Jones index from 52/02/07 to 91/10/31
[11]. We used two different sizes, medium and large, for the datasets in order
to analyze its influence on the performance of the methods. The number of in-
put data were 1500 (medium) and 15000 (large) for Henon, 3000 and 30000 for
Lorenz and 1000 and 10000 for Dow-Jones. These series were normalized in the
interval [0.05, 0.95]. For all of them the goal is to predict the next value using
five previous values. The following configurations were tested:

• For TDL-MLP, topologies with a hidden layer and with logistic sigmoidal
activation functions. The number of neurons of the hidden layer was varied
between 5 and 50.

• For ε-SVR, the method described in [12] was used to select the variance σ
of the RBF kernel and the soft margin C. The ε value of the ε-insensitive
function was varied in the set {0.1, 0.05, 0.025, 0.0125}.

298



• For DLM, a Self Organizing Map (SOM) with a 20×20 topology trained us-
ing 2000 epochs was employed. The neighborhood size was varied between
7 and 27.

• For DLE-VQIT, a VQIT with 400 nodes, αinit = 0.9, β = 0.99 and D =
500 was used. The value of η was set to 2. The neighborhood size L was
varied between 7 and 27.

To estimate the final configuration for each method, ten 10-fold crossvalidation
were run. The performances of the methods were calculated using the mean Nor-
malized Mean Squared Error (NMSE) over the 100 trials. The optimal topologies
are shown in table 1.

Henon Lorenz Dow-Jones

m
e
d
iu

m SVR
ε = 0.0125, σ = 0.45, ε = 0.05, σ = 0.17, ε = 0.025, σ = 0.24,

C = 1.35 C = 0.81 C = 1.07

TDL-MLP 5 − 15 − 1 5 − 15 − 1 5 − 20 − 1

DLM L = 7 L = 9 L = 15

DLE-VQIT L = 7 L = 7 L = 7

la
r
g
e

SVR
ε = 0.0125, σ = 0.45, ε = 0.0125, σ = 0.18, ε = 0.0125, σ = 0.38,

C = 1.35 C = 1.04 C = 0.77

TDL-MLP 5 − 25 − 1 5 − 10 − 1 5 − 20 − 1

DLM L = 7 L = 10 L = 20

DLE-VQIT L = 7 L = 7 L = 21

Table 1: Optimal topologies and training parameters for each method.

Finally, and in order to evaluate the efficiency of the methods, the CPU time
was measured using a computer with a 2,13 GHz processor. Table 2 and 3 show
the performance and CPU times obtained. Results in bold face are the best ones
for each data set.

Henon Lorenz Dow-Jones

m
e
d
iu

m SVR 2.01E − 2 ± 2.40E − 3 1.46E − 2 ± 3.10E − 3 6.70E − 3 ± 2.20E − 3

TDL-MLP 7.59E − 2 ± 5.09E − 1 1.56E-4 ± 8.82E-5 2.53E − 2 ± 2.42E − 1

DLM 1.01E − 1 ± 5.72E − 2 3.34E − 4 ± 1.54E − 4 7.60E − 3 ± 1.17E − 2

DLE-VQIT 1.92E-2 ± 7.20E-3 2.58E − 4 ± 9.95E − 5 1.10E-3 ± 5.92E-4

la
r
g
e

SVR 1.90E − 2 ± 6.90E − 4 1.13E − 2 ± 7.08E − 4 1.35E − 2 ± 3.90E − 3

TDL-MLP 7.18E − 2 ± 5.00E − 1 9.27E − 5 ± 5.67E − 5 3.39E − 2 ± 3.35E − 1

DLM 5.43E − 4 ± 5.65E − 4 9.52E − 6 ± 4.11E − 6 1.00E − 3 ± 6.61E − 4

DLE-VQIT 2.36E-5 ± 7.60E-6 5.59E-6 ± 1.79E-6 4.68E-4 ± 2.13E-4

Table 2: Mean Normalized Mean Squared Error (NMSE) ± standard deviation
for the three datasets and for the four methods compared.

4 Conclusions

In this work a new local modeling method using a three stage procedure is
proposed. As it is supported by the experimental results, the local modelling

299



Henon Lorenz Dow-Jones

la
r
g
e

SVR 0.50 ± 0.02 0.23 ± 0.03 0.06 ± 0.01

TDL-MLP 231.10 ± 33.70 197.45 ± 20.48 111.91 ± 21.17

DLM 26.13 ± 0.25 27.59 ± 0.44 25.49 ± 0.24

DLE-VQIT 88.50 ± 0.46 115.69 ± 0.81 82.13 ± 0.44

Table 3: Mean training times, in seconds, and standard deviations for each
method and for the three large size datasets. Corresponding training times are
proportional for medium size datasets.

methods exhibit, for the data sets employed, a better performance and a more
stable behaviour than the global approaches indicated by its small standard
deviation of the NMSE. The difference between the errors obtained by global
and local methods are smaller for medium size datasets although, in general,
the NMSE obtained by local methods is still smaller in this case. Regarding
both local methods, DLE-VQIT achieves considerably better results than the
previous DLM approach. Finally, concerning the execution time, DLE-VQIT
presents acceptable values for real applications.

References

[1] M. van Veelen, J. Nijhuis, and B. Spaanenburg. Neural network approaches to cap-
ture temporal information. In Computing Anticipatory Systems - Third International
Conference. AIP Conference Proceedings, volume 517 of American Institute of Physics
Conference Series, pages 361–371, May 2000.

[2] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptative mixtures of local
experts. Neural Computation, 3:79–87, 1991.

[3] O. Fontenla-Romero, A. Alonso-Betanzos, E. Castillo, J.C. Principe, and B. Guijarro-
Berdiñas. Local modeling using self-organizing maps and single layer neural networks. In
Lecture Notes In Computer Science, volume 2415, pages 945–950, 2002.

[4] J. Vesanto. Using the SOM and local models in time-series prediction. In Proceedings of
WSOM’97, Workshop on Self-Organizing Maps, Espoo, Finland, pages 209–214. 1997.

[5] A.J. Smola and B. Schölkopf. A tutorial on support vector regression. Technical report,
NeuroCOLT, 1998.

[6] J.C. Principe, T. Lehn-Schioler, A. Hedge, and D. Erdogmus. Vector-quantization using
information theoretic concepts. Natural Computing, 4:39 – 51, 2005.

[7] O. Fontenla-Romero, A. Alonso-Betanzos, E. Castillo, and B. Guijarro-Berdiñas. A global
optimum approach for one-layer neural networks. In Lecture Notes In Computer Science,
volume 2415, pages 1429–1449, 2002.

[8] M. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks, 6:525–533, 1993.

[9] J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. Spider SVM toolbox, 2006.
http://www.kyb.tuebingen.mpg.de/bs/people/spider/, Last access: 2-11-2007.

[10] E.A. Wan. Time series data, 2005. http://www.cse.ogi.edu/∼ericwan/data.html, Last
access: 2-11-2007.

[11] P. Vlachos. Statlib-datasets archive, 2005. http://lib.stat.cmu.edu/datasets/, Last access:
2-11-2007.

[12] V. Cherkassky and Y. Ma. Practical selection of SVM parameters and noise estimation
for SVM regression. Neural Computation, 17:113–126, 2002.

300


