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Univ. Carlos III de Madrid - Dept. of Signal Processing and Communications
Av. de la Universidad 30, Leganés, Madrid - Spain

Abstract. Standard learning procedures are better fitted to estimation
than to classification problems, and focusing the training on appropriate
samples provides performance advantages in classification tasks. In this
paper, we combine these ideas creating smooth targets for classification
by means of a convex combination of the original target and the output of
an auxiliary classifier, the combination parameter being a function of the
auxiliary classifier error. Experimental results with Multilayer Perceptron
architectures support the usefulness of this approach.

1 Introduction

Standard Neural Network (NN) training procedures essentially consist on select-
ing an error objective which measures the difference between the target and the
NN output and minimizing it for the available set of labelled samples by means
of a local search algorithm. They are not completely fitted for designing NN
classifiers because the objectives that are suitable for applying local search algo-
rithms are not more than approximations to the adequate measure of classifiers
quality, the misclassification rate. On the other hand, algorithms that try to re-
duce directly the empirical misclassification rate, such as the original Perceptron
Rule [1], offer poor generalization and are difficult to apply in general; Fisher
type formulations [2] are also approximations, as it is the valuable concept of
Maximum Margin on which Support Vector Machines are based [3].

A well developed family of methods to improve the performance of NN clas-
sifiers trained with standard procedures are the sample selection and sample
edition techniques, in which more effort is paid to reduce the error objective for
those samples that result more important for an appropriate definition of the
classification borders. It is impossible here to provide a complete overview of
these techniques, but we can remark that, from their very beginning [4][5][6],
these “more important” samples are those near the boundary and/or showing
a high error, the relative importance of both types depending on the character-
istics of the problem under analysis with respect to the absence or presence of
noise[7]; [8] is also an interesting discussion. In any case, there is the possibility
of exploring how much importance must be attributed to each type by using a
convex combination of measures of the error and the proximity to the border for
the samples, as done in [9] to construct boosting ensembles.
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In this paper, we explore an idea which is suggested by transductive inference
principles and combines focusing on the relevant samples and transforming the
classification into a regression problem. The idea consists on applying an auxil-
iary classifier to evaluate the error for each sample, to transform the (discrete)
original target into a smoothed version by means of a convex combination of
that target with the (continuous) output of the auxiliary classifier, using a com-
bination parameter depending on the previously evaluated errors, and to train
a second classifier employing the smoothed targets. In this way, we can simulta-
neously edit the samples and use a more adequate error objective for standard
search algorithms; this last point opening the possibility of training with these
algorithms even classifier schemes that cannot be directly trained in this manner,
such as Gaussian Processes machines. The idea we propose is similar to that
presented in [10], although particular learning mechanisms are different.

2 Definition of the smoothed targets

We will restrict our discussion here to binary problems, and we will work with
Multilayer Perceptrons (MLPs), because the only objective of this paper is to
show that our proposal is simple, general, and beneficial.

So, we will first train an auxiliary standard MLP, MLPT , and we will use its
output oaux to define the smoothed target for the second (final) MLP, MLPST :

ts(x) = λ(|e|) t(x) + (1− λ(|e|)) oaux(x) (1)

where t(x) is the original target(±1), and λ(|e|) is the convex combination
weight:

λ(|e|) =


exp(− (|e|−µ)2

α1
), |e| ≤ µ

exp(− (|e|−µ)2

α2
), µ < |e| ≤ 2

(2)

e being the error corresponding to the auxiliary NN, and µ, α1, α2 being param-
eters of the Gaussian bells. MLPT and MLPST can have different sizes. Since
we are dealing with an estimation approach, we test both linear and sigmoidal
output activations for MLPST .

The aspect of λ(|e|) is shown in Fig.1. It is maximum for |e| = µ, and, from
this point, it decays towards well classified (|e| → 0) or wrongly classified (|e|
→ 1) cases with different rates, corresponding to parameters α1 and α2, re-
spectively. Note that λ(|e|) indicates how much of the original target we keep
in smooth target ts(x); i.e., how much we focus on the corresponding sample.
Since we can select µ, we can emphasize more those samples that show a certain
“compromise” between error and proximity to the (auxiliary) border, and reduce
this “emphasis” in a different manner when the error increases or decreases, (We
remark that, to emphasize more the more erroneous samples, it is enough to in-
crease µ, and α2 if needed). This is a very flexible form and, although it is
possible to use many other “reasonable” emphasis schemes, the experience indi-
cates that the performance results do not depend on their particular aspects in
a significant amount as long as they are flexible enough.
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Fig. 1: Form of λ(|e|) : µ = 1, α1 < α2.

3 Experiments

We have tested the proposed procedure with three standard benchmark datasets.
The first is the synthetic bidimensional Ripley problem [11], which has a Bayesian
missclassification rate of 8%. Ionosfera and Tictactoe are two real datasets from
the UCI Machine Learning Repository [12].

We train both the auxiliary and MLPST machines by means of the Back-
propagation algorithm, using the square error criterion, with a learning rate of
10−3 and applying an epoch-by-epoch 20% cross-stoping procedure, allowing a
maximum number of training epochs high enough (800) to assure convergence.
Ten runs have been completed for each situation, selecting also the best values
of the hyperparameters:
- Number of units of MLPT : NT = {4, 6, 8, 10, 12, 14, 16}
- Idem MLPST : same
- µ:{0.1, 0.3, 0.6, 1, 1.2, 1.6, 2}
- α1, α2 :{0.001, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 3, 4, 5}
by means of a 20% cross-validation.

The MLPT weigths are randomly initialized for each run following a uniform
[-0.1,0.1] distribution, and the weights of the MLPST machine are initially set
to the final values of the MLPT having the same size.

Optimal values for the hyperparameters are :
- Ripley : NT =12, NST =8, µ=1.6, α1=0.05, α2=4 (sigmoidal activation)
- Ionosfera : NT =14, NST =4, µ=1.6, α1=2, α2=1.5 (linear output)
- Tictactoe : NT =14, NST =4, µ=1.6, α1=4, α2=3 (linear output)

For the Ripley problem, highly erroneous samples help a lot to define the
border, and emphasizing them allows to reduce the size of the final machine.
Border samples are essential in Ionosfera. In the case of the Tictactoe, it seems
to be important to pay a reduced attention just to very clearly well classified
samples, and not too much is needed for wrongly classified examples.
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As a reference, we will compare the results of our approach with those given
by the optimal size standard MLP (which is N=14 for Ripley, N=4 for Ionosfera
and N=14 for Tictactoe). Table 1 presents the results of the experiments (ten
run statistics). Table 1 also includes results of using Cachin’s Error Dependent
Repitition (EDR), the best (on the average) method proposed in [6], as a refer-
ence. Architectures are MLPs with 14, 12, and 8 hidden neurons, respectively.
Note that results are very near to those of our MLPST , but without creating
soft targets.

Dataset MLP MLPST EDR
Ripley 90.35±0.58 90.60±0.34* 90.25±0.40

Ionosfera 91.00±3.40 92.12±2.66 91.73±4.17
Tictactoe 68.56±4.51 71.69±4.40 71.38±4.59

Table 1: Average classification accuracy (standard deviation) for classical MLP
and the MLPST and the three test problems. * : Sigmoidal output activation

Fig. 2: Decision boundary for two dimensional problem Ripley.

In comparison with standard MLP, there is a very slight advantage of our
method in Ripley, and a little bit higher for Ionosfera. Advantage is clearer
for Tictactoe, although we must admit that we are far from the classification
performance that can be obtained using more powerful designs [9]. In any case,
improvements appear, and this is an important conclusion that support the
application of the method to more elaborated schemes.

Obviously, we get these improvements by paying a higher training effort:
we need 7x7x11x11 more designs (according to the number of values of the
additional parameter) to carry out cross-validation, although number of training
epochs is reduced (between one half and one fourth) because the initialization
is done with the corresponding standard MLP weights.
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In Figure 2 we can see how the MLPST classification border fits better the
theoretical frontier corresponding to synthetic problem Ripley. Note that, in this
case, samples are taken from Gaussian (mixture) distributions for each class; so,
all of them are relevant to define the classification border; sampling effects can
be reasonably compensated by means of focusing on erroneous samples. Figure
3 represents the error for the 1000 test samples when using the optimal MLP
and MLPST .When applying the first machine, there are many samples with
important error values, and the machine weigths have not capacity enough to
reduce all these errors, originating a high number of missclassifications. But
when using MLPST the implicit focusing mechanism allows the weight values
to be selected just to deal mainly with relevant errors; as a consequence, it is
possible to move the border towards a position at which most the samples show
a very small square error, and, the number of missclassified examples decreases.

Fig. 3: Error of MLP (a) and of MLPST (b) for Ripley test samples.

Finally, sensitivity of our proposed designs is, with respect to each one of the
design parameters, even more reduced than that of a traditional MLP; average
error changes when each of the parameters jumps to the immediately lower
and higher values are, for Ripley data: NT : -0.17, -0.09; NST : -0.24, 0.00;µ: -0.30,
-0.10;α1: -0.13, -0.18;α2: -0.16, -0.15; in comparison, for the MLP classifier, we
have: N:+0.07, -1.02 .Of course, sensitivity increases when one considers several
parameters at the same time; but the “omniscient” approach - that using the
test set to select parameters (and which is not a valid design, but it can be used
to estimate sensitivity with respect to design parameters) gives the results for
Ripley: NT =10,NST =16,µ=1.6, α1=0.1,α2=0.01; performance 90.71±0.45; and
these data show that there is a very moderate sensitivity with respect to the
design parameters.
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4 Conclusions and further work

Smoothing classification target values in a manner which allows focusing the at-
tention in the most important samples for learning purposes is a well-principled
idea. In this paper, we propose to implement this idea by means of using the
output of an auxiliary machine to construct smoothed targets by means of a con-
vex combination of the original target with its output, the convex combination
parameter being selected according to the error of the preliminary classification,
just in order to allow designing an adequate focusing mechanism. A first se-
ries of experiments supports the effectiveness of the approach to improve the
performance of (MLP) classifiers, and their analysis reveals that the implicit
mechanisms that play a role in this improvement are consistent with the princi-
ples of the approach.

It is remarkable that, when we smooth targets, we are transforming classifica-
tion into estimation problems; this fact allows to apply directly standard search
algorithms to some learning classification machines that cannot use them (with-
out employing approximations) ; this is the case of Gaussian Processes machines,
in which the original classification targets cannot be considered as samples of
a Gaussian variable, and of Mixture of Expert ensembles, that propose a sort
of Gaussian mixture model for targets. Since there is an additional emphasis
effect, not only easiness, but also some performance advantage can be expected.

Finally, let us say that it is also interesting to explore if these smoothing
target principles can be used to build machine ensembles.
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