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Abstract. In our previous work, we have developed sparse least squares
support vector regressors (sparse LS SVRs) trained in the primal form in
the reduced empirical feature space. In this paper we develop sparse LS
SVRs trained in the dual form in the empirical feature space. Namely,
first the support vectors that span the reduced empirical feature space are
selected by the Cholesky factorization and LS SVR is trained in the dual
form by solving a set of linear equations. We compare the computational
cost of the LS SVRs in the primal and dual form and clarify that if the
dimension of the reduced empirical feature space is almost equal to the
number of training data, the dual form is faster. But the primal form
is computationally more stable and for the large margin parameter the
coefficient matrix of the dual form becomes near singular. By computer
experiments using some benchmark data sets we verify the above results.

1 Introduction

A least squares support vector machine (LS SVM) [1] is a variant of an SVM, in
which inequality constraints in an L2 SVM is replaced by equality constraints.
This leads to solving a set of linear equations instead of a quadratic programming
program. But the disadvantage is that all the training data become support vec-
tors. To solve this problem, in [1], support vectors with small absolute values
of the associated dual variables are pruned and the LS SVM is retrained using
the reduced training data set. This process is iterated until sufficient sparsity is
realized. Because the training data are reduced during pruning, information for
the deleted training data is lost for the trained LS SVM. To overcome this prob-
lem, in [2], independent data in the feature space are selected from the training
data, and using the selected training data the solution is obtained by the least
squares method using all the training data. In [3] based on the concept of the
empirical feature space proposed in [4], LS SVMs are formulated as a primal
problem and by reducing the dimension of the empirical feature space, sparse
LS SVMs are realized. In [5], sparse LS SVMs are extended to function approx-
imation. Namely, the LS SVR is trained in the primal form in the empirical
feature space.

In this paper we formulate dual LS SVRs in the empirical feature space and
clarify the computational complexity and stability. Since the empirical feature
space is finite, we can train the dual LS SVM directly by solving a set of linear
equations. To generate the mapping function to the empirical feature space,
we select the maximum independent components in the kernel matrix by the
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Cholesky factorization. And reducing the independent components we obtain a
sparse LS SVR.

Stability of computation depends on the positive definiteness of the coefficient
matrix of the set of linear equations. We compare positive-definiteness of the
coefficient matrices of the primal and dual forms and analyze computational
stability. We also compare the computational complexity of the both methods.

In Section 2, we formulate dual LS SVRs in the empirical feature space, and
analyze the computational complexity and stability. In Section 3, we show the
validity of the theoretical analysis by computer experiments.

2 Training in the Empirical Feature Space

2.1 Formulation

Let the approximation function be

De(x) = vT h(x) + be, (1)

where v is the N -dimensional vector, be is the bias term, h(x) is the N -dimen-
sional vector that maps the m-dimensional vector x into the empirical feature
space and is given by [5]:

h(x) = (H(xi1 ,x), . . . , H(xiN ,x))T . (2)

Here x1, . . . ,xM are M training data, N (≤ M) is the dimension of the em-
pirical feature space, and ij ∈ {1, . . . , M}, j = 1, . . . , N . By this formulation,
xi1 , . . . ,xiN become support vectors.

We use the Cholesky factorization in selecting support vectors [6]. During
the Cholesky factorization, if the root of the diagonal element is smaller than the
prescribed value η (> 0), we delete the associated row and column and continue
decomposing the matrix.

The LS SVR in the empirical feature space is trained by minimizing

Q(v, ξ, be) =
1
2

vT v +
C

2

M∑
i=1

ξ2
i (3)

subject to the equality constraints:

vT h(xi) + be = yi − ξi for i = 1, . . . , M, (4)

where v is the N -dimensional vector and yi is the output for input xi, ξi is the
slack variable for xi, and C is the margin parameter.

2.2 Primal Form

Substituting (4) into (3), we obtain

Q(v, ξ, be) =
1
2

vT v +
C

2

M∑
i=1

(yi − vT h(xi)− be)2. (5)
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Taking the partial derivatives of (5) with respect to v and be and equating them
to zero, we obtain

be =
1
M

M∑
i=1

(yi − vT h(xi)), (6)


 1

C
+

M∑
i=1

h(xi)hT (xi)− 1
M

M∑
i,j=1

h(xi)hT (xj)


v

=
M∑
i=1

yi h(xi)− 1
M

M∑
i,j=1

yi h(xj). (7)

Therefore, from (7) and (6) we obtain v and be. We call the LS SVR obtained
by solving (7) and (6) primal LS SVR (PrLS SVR).

2.3 Dual Form

Introducing the Lagrange multipliers β = (β1, . . . , βM )T into (3) and (4), we
obtain the unconstrained objective function as follows:

Q(v, ξ, be, β) =
1
2

vT v +
C

2

M∑
i=1

ξ2
i −

M∑
i=1

βi(vT h(xi) + be − yi + ξi). (8)

Taking the partial derivative of (8) with respect to v, be and ξi, in addition to
(4), we obtain

v =
M∑
i=1

βi h(xi),
M∑
i=1

βi = 0, β = Cξ. (9)

Therefore, from (4) and (9)

β = Ω−1
e (y − 1 be), be = (1TΩ−1

e 1)−11TΩ−1
e y, (10)

where

Ωeij = hT (xi)h(xj) +
δij

C
, y = (y1, . . . , yM )T , 1 = (1, . . . , 1)T . (11)

We call the LS SVR obtained by solving (10) dual LS SVR (DuLS SVR). And
we denote LS SVRs trained in the empirical feature space in the primal or dual
form as ELS SVRs.

To increase sparsity of LS SVRs, we increase the value of η. The optimal
value is determined by cross-validation. We call thus trained LS SVRs sparse
LS SVRs. To show that sparse LS SVRs are trained in the primal or dual form,
we denote sparse PrLS SVRs or sparse DuLS SVRs.
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2.4 Comparison

We compare the calculation time and stability of calculations by primal and
dual forms for the empirical feature space. In comparing the calculation time,
we evaluate the time for setting the coefficient matrix and solving the set of linear
equations by the Cholesky factorization since they occupy the greater part of
computation time. In setting the coefficient matrix Ωe in (10) M2 dot products
with length N (M2N multiplications) are required. We can reduce them almost
by half because Ωe is symmetric. Although the number of multiplications in
setting the coefficient matrix in (7) is almost the same but since h(xi)hT (xj)
is not a dot product, setting of the coefficient matrix in (7) is not efficient as
that of Ωe. The Cholesky factorization of Ωe includes o(M3) multiplications and
M square roots. Since the coefficient matrix in (7) is N × N and N ≤ M , the
Cholesky factorization of the coefficient matrix in (7) is faster. Thus there is
a cross point in training in the dual and primal forms in the empirical feature
space; if N ≈ M , the dual form is faster and as N is smaller than the value at
the cross point, the primal form is faster.

To compare the stability of calculations, we first show that the coefficient
matrix in (7) is positive definite. Let z be an N -dimensional vector. Then the
coefficient matrix is positive definite if

zT


 1

C
+

M∑
i=1

h(xi)hT (xi)− 1
M

M∑
i,j=1

h(xi)hT (xj)


 z > 0 (12)

for any z �= 0. The left hand side of the inequality is rewritten as follows:

1
C

zT z+
M∑
i=1

(
zT h(xi)

)2 − 1
M

(
M∑
i=1

zT h(xi)

)2

. (13)

Let ai = zT h(xi). Then (13) becomes

1
C

zT z+
M∑
i=1

(ai)2 − 1
M

(
M∑
i=1

ai

)2

. (14)

Now for the last two terms in (14), the special case of the Cauchy-Schwarz

inequality
∑M

i=1(ai)2− 1
M

(∑M
i=1 ai

)2

≥ 0 holds, where the strict equality holds
when ai = 0 (i = 1, . . . , M) or ai = c (constant) (i = 1, . . . , M).

Since h(xi) (i = 1, . . . , N) are linearly independent, ai = 0 (i = 1, . . . , N)
for z = 0. And for ai = c (constant) (i = 1, . . . , N), z is uniquely determined.
Since h(xi) (i ∈ N + 1, . . . , M) is a linear combination of h(xi) (i = 1, . . . , N),
ai = c (i = N + 1, . . . , M) only when any of h(xi) (i = N + 1, . . . , M) is equal
to one of h(xi) (i = 1, . . . , N). As a special case, the last two terms in (14) is
zero when N = M . Therefore, for M > N , the strict inequality is considered to
hold. In addition, because of the first term in (13), the coefficient matrix in (7)
is positive definite.
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From (11), the rank of M × M matrix Ωe is N for C = ∞. Although for
finite C, Ωe is positive definite, for large C Ωe approaches to positive semidefinite.
Thus comparing Ωe and the coefficient matrix in (7) the latter is more stable.

3 Performance Evaluation

We compared the computational stability and time of PrLS SVRs and DuLS
SVRs using the Mackey-Glass [7] (4 inputs, 500 training and 500 test data), water
purification [8] (10, 241, 237), orange juice1 (700, 150, 68), and Boston2 problems
(13, 506). For the Boston problem we used the fifth and the 14th variables as
the outputs [9] and call them the Boston 5 and 14 problems, respectively. For
each problem, we randomly divided the data set into two and generated 100 sets
of training and test data sets. In all cases, we used RBF kernels.

For the ELS SVR we determined the parameters C and γ by fivefold cross-
validation [5]. For the sparse PrLS SVR, we determined the values of C and η
by fivefold cross-validation. For γ we used the values determined for the PrLS
SVR. For the DuLS SVR and sparse DuLS SVR, we used the parameter values
determined for the PrLS SVR and sparse PrLS SVR, respectively.

Table 1 shows the average of the absolute approximation errors (AAAE) for
the test data sets, the numbers of support vectors, and training time for ELS
SVRs, sparse ELS SVRs, and LS SVRs. In theory the PrLS SVR and DuLS
SVR give the same results. But because of the numerical instability of the DuLS
SVR, the AAAEs for the Mackey-Glass data set were different. They are shown
in parentheses and ‘—’ denotes that the solution was not obtained because the
argument of the root in Cholesky factorization became negative. Except for the
Mackey-Glass data set, this did not happen.

For the number of support vectors the numerals in the parentheses show the
percentage of the support vectors for the sparse LS SVR against those for the
LS SVR. By the sparse LS SVR the number of support vectors reduces to 43%
to 77% of that of the LS SVR.

As for the training time for the ELS SVR, sparse LS SVR, and LS SVR, we
measured the time for training an SVR for given parameter values and testing
for the training and test data sets using a workstation (3.6GHz, 2GB memory,
Linux operating system). The numeral in the parentheses shows the time for the
DuLS SVR. According to our theoretical analysis, if N ≈ M , the dual form is
faster and as N decreases the tendency is reversed. From the table, with N ≈ M
the DuLS SVR is faster than the PrLS SVR and for the sparse ELS SVRs with
N < M , the PrLS SVR is equal to or faster.

4 Conclusions

In this paper we formulated the dual LS SVR (DuLS SVR) in the empirical
feature space and analytically compared the computation cost and numerical

1ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
2http://www.cs.toronto.edu/˜delve/data/datasets.html
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Table 1: Comparison of the averages of the absolute approximation errors and
the standard deviations of the errors, support vectors, and training time.

Data Errors Support Vectors Training Time

ELS Sparse LS ELS Sparse LS ELS Sparse LS

M.-G. 0.000300 0.000316 0.000374 495 384 (77) 500 1.74 1.11 0.42

(—) (0.000336) (1.20) (1.16)

W. P. 0.982 0.980 0.945 241 103 (43) 241 0.19 0.07 0.07

(0.15) (0.12)

O. J. 6.20 5.88 4.42 150 112 (75) 150 0.44 0.38 0.41

(0.43) (0.38)

B. 5 0.0290 0.0292 0.0276 255 134 (53) 255 0.22 0.10 0.08

±0.00156 ±0.00160 ±0.00181 ±12 ±5 ±12 (0.18) (0.15)

B. 14 2.36 2.38 2.27 255 132 (52) 255 0.22 0.10 0.08

±0.164 ±0.153 ±0.145 ±12 ±5 ±12 (0.18) (0.15)

stability of the primal LS SVR (PrLS SVR) and DuLS SVR. According to the
analysis, if the dimension of the empirical feature space is roughly equal to the
number of the training data, DuLS SVR is faster in training, and for the smaller
dimension, the PrLS SVR is faster. According to the analysis of the positive-
definiteness of the coefficient matrix, the PrLS SVR is more numerically stable
than the DuLS SVR for the small margin parameter value.

The computer experiment for some benchmark data sets confirmed the above
results and for the small margin parameter, training of DuLS SVR became un-
stable and in an extreme case, the solution was not obtained.
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