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Abstract. This paper addresses the possible use of virtual neural sensors,
implemented by means of weightless systems, as active or reactive sensors.
The latter, made possible by the intrinsic characteristic of weightless sys-
tems that can be trained on–line. These virtual neural sensors have been
adopted for actual applications in different domains.

1 Introduction

A physical sensor, in general, takes a certain form of input (speed, distance,
temperature, and so on) and converts it, through read–out circuitry, into read-
ings that can be interpreted. On the contrary, a virtual sensor (also known as
software sensor or estimator) is an abstract device supporting a particular sens-
ing functionality. The functionality is realised through sensor value abstraction
and sensor control abstraction [1]. The former provides the facilities to measure
sensory parameters which are not directly related to physical devices while, the
latter, gives helpful sensor information through a suitable interface.

Virtual sensors are frequently used in substitution of physical sensors when
physical sensors are not feasible due to the price, size, weight, weakness, the
quality of measurement they provide, or when no specific physical sensors are
available [2]. Furthermore, a virtual sensor can be dynamically created and
destroyed when no longer required: it has an explicit life cycle.

Data–driven virtual sensors [3] are introduced either when the analytical
model of the system is unknown or the model development costs must be kept
down. They estimate the dependence between known and unknown sensorial
magnitudes statistically, from a training set including representative examples
of operation. The most common implementation of such sensors is by means
of artificial neural networks (ANN) [4]. ANNs can model and control dynamic
processes because of their extremely powerful adaptive capabilities in response
to non linear behaviours [5][6]. In fact, they can establish highly complex, non–
linear, multidimensional associations between input and output [2].

The virtual neural sensors (VNS) can be used in different ways: to filter or
transform other sensors data [7][8], to improve physical sensors performance [9],
to mitigate the adverse effects of the environment parameters [6], to predict the
final product quality on the basis of other sensorial information [10].

In this paper, we show two different ways of use of VNS’ implemented by
means of WiSARD–like systems [11]. In particular, a modified version of WiS-
ARD [12] is adopted to implement active VNS’, while RAM-discriminators are
used as reactive VNS’.
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2 WiSARD as VNS

WiSARD is an adaptive pattern recognition machine which is based on neural
principles. It is a weightless system whose basic components are RAM–discrimi-
nators. A RAM–discriminator consists of a set of N one–bit word RAMs with
X inputs and a summing device (Σ). Any RAM–discriminator can receive a
binary pattern of X∗N bits as input. The RAM input lines are connected to the
input pattern by means of a so–called “random mapping”. The Σ enables this
network of RAMs to exhibit – just like other ANNs that more directly model
features of biological neural networks – generalisation and noise tolerance.

Each discriminator is trained on a particular class of patterns, and classifi-
cation by the overall multidiscriminator system is achieved in the following way.
When a pattern is given in input, each discriminator gives a response (r) on that
input. The responses are evaluated by an algorithm which compares them and
computes the relative confidence c of the highest response (i.e., the difference d
between the highest and the second response, divided by the highest response).

RAM–discriminators were selected as neural components to implement VNS’
on the basis of the following considerations: RAM–discriminators are tailored for
efficient implementation on conventional computers; the use of artificial neurons
more closely reflecting biological neurons would not make any difference; they
can be trained online. Furthermore, changing the training algorithm, these
systems can produce “mental” images [12] to be used as VNS output.

2.1 Weighless systems for active or reactive VNS’

An ANN trained on different classes and then used to recognise objects or part of
them is considered an active VNS. This means that, before to install the active
VNS we need to train the corresponding ANN. On the other hand, a VNS that
can adapt its behaviour in real time (reactive VNS) cannot be trained in advance.
In order to obtain such a VNS, we need an ANN that can be trained on line:
RAM–discriminators have this characteristic. A single RAM–discriminator is a
reactive VNS if: 1) it is trained online with background examples; 2) its output
is 1 − r instead of r; 3) the training and classification phases are continuously
alternate during its use. In this way, the VNS will “react” if everything but the
background is given as input.

We would like to point out that, in this paper, the outputs of both active
and reactive VNS’ have to be interpreted and evaluated by another system.

In the next sections, we present the use of VNS’ in two different applications:
robot global localisation [13] and intelligent video surveillance [14].

3 Active VNS for landmark recognition

In most robotic application the vision system plays a fundamental role in sensory
data acquisition and usually it is the slowest and most computationally heavy
module of the whole system. It comes as a consequence that having a fast
processing vision system could be a crucial point for a generic robotic system. In
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Fig. 1: Left: training set – Right: inward corner detected by the active VNS

order to reduce the elaboration time, it is sometime convenient not to process the
whole image. In this case, the vision system has to be designed and implemented
taking into account the particular environment in which the robot acts and its
main goal (self localisation).

The VNS for landmark recognition is an adapted version of the one used in
a previously designed hybrid neurosymbolic system [15]. In this case, corners
between walls represent the natural landmarks the VNS has to detect and clas-
sify. In order to generate an appropriate training set, it is necessary to create,
for each RAM–discriminator, different images representing corners seen from
different visual angles. This is due to the fact that it is not predictable, neither
decidable, the angle from which the robot will see the corner (see Figure 1 Left).

On this particular scene, a virtual camera, positioned with the same para-
meters of the real one, analysed the possible cases. The scene has been rotated
step by step (5 degrees step) and a frame has been captured for each new angle.
From each frame two types of “relevant” corners have been extracted to form
the corresponding training set (“inward” and “outward” corners).

The robot camera tilt inclination has been fixed to -15 degrees; this means
that the landmarks to be detected are going to be only in the lowest part of
the image (see Figure 1 Right). Moreover, to improve the vision system per-
formances, the VNS takes the input by a squared spot (a sort of “attention
window”) that scans just that part of the image trying to detect and classify
the landmarks. The squared spot content is processed by the VNS only if it
contains a certain amount of black pixels. So doing, we obtain a vision system
capable of quickly detect the landmarks. The VNS actively looks for landmarks
and each time it detects a corner, it classifies this feature by showing both the
corresponding “mental” image and the spot content (see Figure 1 Right).

The VNS outputs are interpreted by a symbolic system (BDI agent [16]).
During the robot navigation, the agent collects information about recognised
landmarks and their sequence. The robot keeps on navigating until the BDI
agent has gathered enough information to locate the robot in the environment.

4 Reactive VNS’ for video surveillance

Reactive VNS’ have been adopted for a video surveillance system working 24
hours a day in an outdoor environment (in particular, railway tunnels [14]).
The system has to alert the control room in case of “abnormal“ situations: a
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Fig. 2: Left: training and classification phases – Right: VNS setting

tree or a rock on the railway, a man entering the tunnel, and so on. In order
to deal with light and weather changes and to distinguish between allowed and
not allowed movements, different reactive VNS’ have been placed in strategic
places on the images coming from the video camera. To each virtual sensor a
RAM–discriminator is associated.

There are three different VNS’ placed on the image: green, red and blue.
The green VNS’ cover those parts of the scene where certain movements are
allowed (for instance, train movements); the red ones, those parts where some
movements could be very dangerous or risky. In order to allow the system to get
accustomed to light and weather changes, the values reported by blue VNS’ are
used to normalise the other VNS outputs. This values normalisation, in addition
to the noise resistant property typical of ANNs, allows the system to have the
same performances during the entire day.

In order to make the system less susceptible to light and weather changes,
two different time intervals are fixed: δt (training interval) and ∆t (classification
interval). During δt the VNS’ are trained with a set of frames in which the alert
level is “normal” (this allows the VNS’ to react in case of “abnormal” situations).
∆t is the classification time length and, for indoor application, can be as long
as the user prefers (depending on the kind of application the system is adopted
for); while, for outdoor applications a good length for ∆t is about 10 seconds.
With these settings, the system can easily face light and weather changes. These
two time intervals are repeated during the entire day with the supervision of the
symbolic module. In fact, if the symbolic module agrees, the VNS’ can be trained
otherwise they keep on classifying (see Figure 2 Left).

To each VNS a different interpretation is associated. The green VNS’ are
devoted to the detection of allowed movements. In fact, in this specific appli-
cation, they are placed in a way that follows the shape of trains entering and
leaving the tunnel. We label them respectively with TIN and TOUT (see Figure
2 right). From the activation sequence of TIN (TOUT ) the system “understands”
that a train is entering (leaving) the tunnel.

WIN and WOUT are red VNS’ and they cover those parts of the scene the
user believes to be risky. They are sized such as the shape of a human being
nearby the tunnel. WIN (WOUT ) are never covered by a train entering (leaving)
the tunnel (in Figure 2 right is reported the scene of a tunnel from the best
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Fig. 3: Two different VNS outputs

angle of view). In case of superimposition, such as TIN on WIN , WIN will be
not considered anymore during the train entering. For red VNS’ are important
both the sequence of activation (a big animal crossing the railway) and the single
activation (a rock on the railway or someone stopped before the tunnel entrance).

One or two blue VNS’ (BG in Figure 2 right) are used to measure the noise
degree of the scene: they are placed where no movement is possible. The values
of these VNS’ are used by the system just to normalise the other VNS’ outputs.

The output of the VNS’ is formed by pairs of response–colour and it is passed
to the symbolic module that already knows the VNS strategic positioning and
labelling. In Figure 3, two different patterns of VNS outputs are reported. In
the case of a train entering the tunnel both red and green VNS’ react and their
activation is collected and evaluated by the symbolic module. In the presence
of a man crossing the railway, we get only the activation given by red VNS’. A
little blue VNS activation is present in both examples.

The VNS activation pattern produced on a single frame is considered but
not directly evaluated by the system. In fact, in order to better understand and
evaluate what in the scene is happening, the system stores the VNS activation
values on the current frame and on a certain number of previous frames. All the
pairs response–colour of these frames are grouped in one response–colour value
that will be used to evaluate the scene. This new value (we refer to as level of
activation) represents a sort of weighted mean: the closer is the frame to the
current frame, the higher is considered its contribution to the weighted mean.

The levels of activation of red and green VNS’ are the data used by the
symbolic module to evaluate the scene and to set the alert level.

5 Conclusions

In this paper, we have shown the use of weightless systems as active or reactive
VNS’ in two different applications. The VNS’ are just used to gather information
about the environment and their outputs have to be necessarily interpreted and
evaluated by another system (in our case, a system implemented by means of
BDI agents). The coupling of VNS’ with symbolic reasoning for interpreting their
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outputs, makes the presented systems both very light from the computational
and hardware point of view and quite robust in performances. Furthermore,
these kind of VNS’ can be readily put on hardware (micro–controller) further
improving the computational performances. In fact, to implement these VNS’
one needs only a certain amount of RAM and some simple control.
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