ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

Multilayer Perceptrons with Radial Basis
Functions as Value Functions in
Reinforcement Learning

Victor Uc Cetina

Humboldt University of Berlin - Department of Computer Science
Unter den Linden 6, 10099 Berlin - Germany

Abstract. Using multilayer perceptrons (MLPs) to approximate the
state-action value function in reinforcement learning (RL) algorithms could
become a nightmare due to the constant possibility of unlearning past
experiences. Moreover, since the target values in the training examples
are bootstraps values, this is, estimates of other estimates, the chances to
get stuck in a local minimum are increased. These problems occur very
often in the mountain car task, as showed by Boyan and Moore [2]. In
this paper we present empirical evidence showing that MLPs augmented
with one layer of radial basis functions (RBFs) can avoid these problems.
Our experimental testbeds are the mountain car task and a robot control
problem.

1 Introduction

Reinforcement learning [9] is a very appealing artificial intelligence method to
approach the machine learning problem. The idea of programming a compu-
tational system in such a way that it could improve its performance through
several interactions with the environment is certainly attractive. In relatively
small problems with discrete state and action spaces using a lookup table and
algorithms like TD() [8], Q-learning [12] or Sarsa [10] should be enough to get
optimal results. Of course, we need to find the best set of parameters and allow
for enough training episodes. The challenging part in reinforcement learning
comes when we try to solve more complicated problems involving continuous
spaces, and particularly high dimensional ones. Then, a lookup table is not
enough to represent the value function and we need to approximate it some-
how. When we get to this point, we have to decide between using a linear or a
non-linear method. Linear methods like the cerebellar model articulation con-
trollers (CMACs) [10, 5] and RBFs networks of gaussian functions [1, 3] are by
far the most recommended methods for RL, primarily because they are localised
function approximators and therefore they are less affected by the unlearning
problem. Kretchmar and Anderson [4] studied the similarities and differences
between CMACs and RBFs with Q-learning applied to the mountain car task.
Another option worth mentioning is the use of regression trees like in the method
proposed by Wang and Dietterich [11], although it should be noted its limited
applicability for tasks where incremental learning is required.

In this paper we present experimental results showing how a non-linear func-
tion approximator like the MLP augmented with a RBFs layer could become

161



ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

a good choice to represent the state-action value function in RL problems with
continuous state spaces and high dimensionality. We tested this approach in
the mountain car task, which is well known as a tricky control problem, es-
pecially for neural networks, as demonstrated by Boyan and Moore [2]. We
also experimented with the dribbling problem in the framework of the RoboCup
competitions.

The rest of this paper is organized as follows. In Section 2 we present the
Sarsa algorithm and the learning structure we propose to approximate the value
function. In Sections 3 and 4 we describe the experiments performed with the
mountain car task and the dribbling problem respectively. Finally, we present
our conclusion in Section 5 and comment about our future work.

2 Algorithm and Value Function Structure

Sarsa is an on-policy temporal difference control algorithm which continually
estimates the state-action value function Q™ for the behavior policy m, and at
the same time changes 7 toward greediness with respect to @™ [9]. In problems
with a small number of state-action pairs and discrete spaces, the @ function is
stored using a lookup table. However, when the number of those pairs grows,
the use of lookup tables becomes impractical, or simply impossible. We need a
function approximator instead. In our case, the () function is represented with a
set of MLLPs, one MLP per action. The Sarsa algorithm with the changes needed
to use a set of MLPs as function approximator is presented in Algorithm 1.

Algorithm 1: Sarsa algorithm for continuous states using MLPs

1 initialize the weights vector W; for all M LP; arbitrarily
2 foreach training episode do

3 initialize s

4 choose a from s using policy derived from @

5 repeat for each step of episode

6 take action a, observe r, s’

7 choose @’ from s’ using policy derived from @

8 Target@ «— MLP,(s) + afr + YM LP,(s') — M LP,(s)]
9 train M LP, with example (s, TargetQ)

10 s+—s ;a+—ad
11 until s is terminal
12 end

The use of MLPs as value function approximators in reinforcement learning
is usually not recommended, given that they suffer from the unlearning problem
and fall into local optima very often. However, if we add a layer of radial basis
functions to the standard MLP, it is possible to create a semi-localised function
approximator that can be used to obtain optimal policies in hard problems with
continuous state spaces and high dimensionality. The proposed MLP has 4

162



ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

k RBFs

m input units

Fig. 1: Multilayer perceptron with one layer of radial basis functions

layers: 2 hidden layers plus the input and output layers (see Fig. 1). The number
m of input units must equal the size of the feature vector that represents the
current state of the environment. In the first hidden layer there are k& RBFs.
For each input variable x; there is a set R; of RBFs r;;. The r;; € R; should
be defined to cover the range of values that x; can take. The outputs of the
RBFs layer are fed into the second hidden layer that consists of n sigmoidal
functions. Finally, the outputs of the second hidden layer reach the output unit.
During the training stage, only the connection weights between both hidden
layers, and between the second hidden layer and the output layer are learned,
leaving the weights between the input and first hidden layer set to 1. Although
one possibility when working with radial basis functions is the optimization of
their parameters through the application of unsupervised learning methods, in
the results presented here, we only experimented with the number of radial basis
functions needed to learn the @) value function. We used gaussian functions of
the form:

o

RBF(z;) = exp (_Hgil\)

The centers c; ; of the b; basis functions defined for x; are placed at a distance
dist; one from the other, where

dist; = mﬂx(ﬂci)l:mln(ﬂfi) and o; = dz;ti

Comprehensive introductions to radial basis functions and their training can
be found in [1, 3]. The main advantage of our topology is that it can be used
with high dimensional state spaces without problems of exponential grow in
the number of RBFs. This is, in the case of having the same number p of
RBFs for each one of the m input variables, we would need only mp RBFs, in
contrast to the p™ we would use in a straightforward implementation of RBF
networks. One common option to avoid the curse of dimensionality is to group
the input variables in pairs, and define the number of RBFs required to cover
the resulting 2-dimensional subspaces generated by each pair. However, the
successful selection of the variable pairs requires some previous knowledge about

163



ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

the input space of the problem, or an important amount of experimentation
instead.

3 Mountain Car Problem

Our first testbed is the mountain car problem, where a car is driving along a
mountain road and it must drive up a hill. However, the engine is too weak
to directly go up the slope. This problem is commonly used as a testbed in
reinforcement learning, and a complete description of it and its dynamics, are
given by Sutton and Barto [9].

3.1 Experiments and Results

For this problem we experimented with 2, 6, 8 and 12 RBFs for each input
variable, and 2 sigmoidal units in the second hidden layer. The best results were
obtained with 12 RBFs and 50,000 training episodes, as it is illustrated in Fig.
2a. Each training episode was terminated either when the goal was reached, or
when 100 movements were performed. The reward function penalizes the actions
with —0.1 all the time, except when the last action performed allowed the car
to reach the goal, in this case the reward is 0. The training policy was e-greedy
with a constant € = 0.01, & = 0.5 and v = 0.5. In terms of the MLPs we used
apmLp = 0.001 and activation functions with outputs in the interval (—1,1).

Some of our best policies were able to reach the goal in 59 steps, however in
average the goal is reached in 63 steps. The quality of our solution is similar
to those presented by Smart and Kaelbling [7], and more recently by Whiteson
and Stone [13]. Moreover, given the great similarity between the shape of our
final value function presented in Fig. 2b and the best one provided by Singh
and Sutton [6, 10], we conclude that our solution is a near-optimal policy.

4 Dribbling Problem

In the RoboCup simulation league, one of the most difficult skills that the robots
can perform is dribbling. Dribbling can be defined as the skill that allows a player
to run on the field while keeping the ball always in its kick range. In order to
accomplish this skill, the player must alternate run and kick actions. The run
action is performed through the use of the command (dash Power), while the
kick action is performed using the command (kick Power Direction), where
Power € [—100,100] and Direction € [—180,180]. There are three factors that
make this skill a difficult one to accomplish. First, the simulator adds noise to
the movement of objects, and to the parameters of commands. This is done
to simulate a noisy environment and make the competition more challenging.
Second, since the ball must remain close to the robot without collisioning with
it, and at the same time it must be kept in the kick range, the margin for error is
small. And third, the most challenging factor, the use of heterogeneous players
during competitions. Using heterogeneous players means that for each game the
simulator generates seven different player types at startup, and the eleven players

164



ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

Steps ba Goal

Walue Function

100 ; ; 100

©— 2 RBFs
0-06 RBFs
AA8RBFs | 490

— 12 RBFs]

™ 2
)
o ® 80
& 10 M 70
60 60
Il Il Il Il
0 10000 20000 30000 40000 50000

Training episodes

(a)

Fig. 2: Mountain car problem: (a) learning curves for different numbers of RBF's,
calculated with a moving average of size 1,000 and averaged over 10 runs; (b)
the learned value function has the typical shape for this problem

16 , , 16
L — 5RBFs ]
14, 0-0 10 RBFs| 4
1l ©020RBFs| ],

Training episodes

Fig. 3: Learning curves for different numbers of RBFs, calculated with a moving
average of size 1,000 and averaged over 10 runs

of each team are selected from this set of seven types. Given that each player
type has different “physical” capacities, an optimal policy learned with one type
of player is simply suboptimal when followed by another player of different type.
In theory, the number of player types is infinite. Due to these three reasons, a
good performance in the dribbling skill is very difficult to obtain. Up today, even
the best teams perform only a reduced number of dribbling sequences during a
game. Most of the time the ball is simply passed from one player to another.

4.1 Experiments and Results

For this problem we experimented with 5, 10 and 20 RBFs for each input vari-
able, and 4 sigmoidal units in the second hidden layer. The best results were
obtained with 5 RBFs and 100,000 training episodes, as it is illustrated in Fig.
3. Each training episode was terminated either when the agent kicked the ball

165



ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

out of its kicking range or when 35 actions were performed. The reward function
returns 4 and 8 when the agent runs more than 5 and 10 meters respectively.
The agent is penalized with -4 when it collision with or loses the ball. The
training policy was e-greedy with a constant € = 0.01, « = 0.5 and v = 0.7. In
terms of the MLPs we used ap,p = 0.05 and activation functions with outputs
in the interval (0,1).

5 Conclusion

In this paper we provide empirical evidence showing that multilayer perceptrons
with one layer of radial basis functions can be used as robust function approx-
imators of the value function in reinforcement learning problems. We present
experimental work with the Sarsa algorithm and two testbeds: the mountain car
task and a difficult robot control problem known as the dribbling task. Exten-
sions to this work include using Q-learning and Actor-Critic methods.

Acknowledgements This research work was supported by a PROMEP scholar-
ship from the Education Secretariat of Mexico (SEP), and Universidad Auténoma
de Yucatéan.

References

[1] C. Bishop, Neural networks for pattern recognition, Oxford University Press, 1995

[2] J. Boyan and A. Moore, Generalization in reinforcement learning: Safely approximating
the value function, In Advances in Neural Information Processing Systems, 7, 1995

[3] S. Haykin, Neural networks: a comprehensive foundation, Prentice Hall, 1999

[4] R.Kretchmar and C. Anderson, Comparison of CMACs and radial basis functions for local
function approximators in reinforcement learning, Proceedings of the IEEE International
Conference on Neural Networks, Houston, pages 834-837, 1997

[6] W. Miller, F. Glanz, and L. Kraft, CMAC: An associative neural network alternative to
backpropagation, Proceedings of IEEE. Special Issue on Neural Networks, 78:1561-1567,
October, 1990.

[6] S. Singh and R. Sutton, Reinforcement learning with replacing eligibility traces, Machine
Learning, 22:123-158, 1996

[7] W. Smart and L. Kaelbling, Practical reinforcement learning in continuous spaces, Pro-
ceedings of the International Conference on Machine Learning, pages 903-910, 2000

[8] R. Sutton, Learning to predict by the methods of temporal difference, Machine Learning,
33:9-44, 1988

[9] R. Sutton and A. Barto, Reinforcement learning: an introduction, The MIT Press, 1998

[10] R. Sutton, Generalization in reinforcement learning: successful examples using sparse
coarse coding, In Advances in Neural Information Processing Systems, 8, 1986

[11] X. Wang and T. G. Dietterich, Efficient Value Function Approximation Using Regression
Trees, Proceedings of the IJCAI Workshop on Statistical Machine Learning for Large-
Scale Optimization, 1999

[12] C. Watkins, Learning from delayed rewards, PhD Thesis, University of Cambridge, Eng-
land, 1989

[13] S. Whiteson and P. Stone, Evolutionary Function Approximation for Reinforcement
Learning, Journal of Machine Learning Research, 7:877-917, 2006

166



