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Abstract. Clustering algorithms such as k-means, the self-organizing
map (SOM), or Neural Gas (NG) constitute popular tools for automated
information analysis. Since data sets are becoming larger and larger, it
is vital that the algorithms perform efficient for huge data sets. Here we
propose a parallelization of patch neural gas which requires only a single
run over the data set and which can work with limited memory, thus it is
very efficient for streaming or massive data sets. The realization is very
general such that it can easily be transferred to alternative prototype-based
methods and distributed settings. Approximately linear relative speed-up
can be observed depending on the number of processors.

1 Introduction

Clustering algorithms like SOM, k-means, fuzzy-k-means, NG, etc. are well
studied and numerous extensions exist to improve their efficiency or memory
usage, including batch optimization, growing strategies, etc. [8]. A vast lit-
erature on parallel implementations of k-means, NG, or SOM can be found
[2, 4, 9, 11, 12, 13, 14] such as realizations on specific hardware [9, 12, 13], im-
plementations for distributed settings [4], or implementations with particularly
efficient cache usage [14]. Most of these implementations, however, rely on on-
line clustering variants which require multiple runs over the data set, or they
implement batch optimization which accesses all data at once.

Massive data sets pose particular challenges towards clustering and visual-
ization and standard algorithms are often not applicable due to memory and
time constraints: data sets do not fit into main memory (i.e. direct batch opti-
mization is not possible) and at most one pass over the data set is affordable (i.e.
standard online methods cannot be applied either). A number of algorithms has
been proposed for streaming data clustering, including various efficient heuristics
[5] as well as efficient, but in the worst case prohibitive exact approximations
[7]. Recently, patch optimization has been proposed for k-means and NG, re-
spectively, which relies on the original cost functions. It dramatically reduces
effort and memory requirements, making it appropriate for huge streaming data
[1, 6]. Based on this proposal, a parallel implementation of k-means has been
investigated in [11] which realizes a simple and efficient implementation of patch
clustering for massive data sets. However, like standard k-means, the algorithm
is very sensitive to initialization and requires multiple runs for multimodal data.

In this contribution, we propose a parallel implementation of patch NG which
processes data in a single run using only limited memory. The algorithm displays
robust results also for multimodal data sets. The realization is based on local
sufficient statistics of parallel runs derived from the standard NG cost function,
such that a canonic, robust, and flexible method results. Communication is
very low and almost linear relative speed-up can be observed. We demonstrate
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the behavior for an artificial multimodal data set as well as a data set from
KDD’98. To our knowledge, this is the first proposal of a parallel single pass
learning scheme with limited memory for neural clustering such as NG or SOM.

2 Patch clustering

Assume data �x1, . . . , �xN ∈ R
n are given, the goal of prototype-based clustering

is to find cluster centers �w1, . . . , �wk ∈ R
n such that the average squared dis-

tance of data points to their respective closest prototype is as small as possible.
Since this function is very sensitive to local optima, NG [10] includes neighbor-
hood cooperation, optimizing the costs (in the discrete case, neglecting constant
factors)

1
2
·
∑

ij

hλ(ri(�xj))(�wi − �xj)2

where ri(�xj) = |{�wl | (�wl − �xj)2 ≤ (�wi − �xj)2}| denotes the rank of prototype �wi

measured according to the distance from �xj and hλ(t) = exp(−t/λ2) constitutes
an exponential weighting function of the ranks. For vanishing neighborhood
σ → 0 original k-means is recovered. This cost function is usually optimized
online by means of a stochastic gradient descent, however, this method requires
multiple runs over the data. Alternatively, batch optimization in turn determines
optimum prototype locations

�wi =
∑

j

hλ(ri(�xj))�xj/
∑

j

hλ(ri(�xj))

for fixed ranks, and optimum data assignments ri(�xj) for fixed prototypes until
convergence [3]. This displays quadratic convergence, but it needs to store all
data in the main memory at once.

Patch optimization as proposed in [1] is based on batch optimization, but it
reduces the memory requirement to a fixed size while maintaining the simplicity
of original batch NG: Data are processed in patches of fixed size, say P , such
that the data fits into main memory. For every patch of data, standard batch
NG is applied, and the result is summarized by means of a sufficient statistics,
i.e. for every cluster A computed in NG, its sufficient statistics is formed by
(Sum(A), n(A)) where Sum(A) is the sum of points assigned to cluster A, and n(A)

its number. For the next patch of data, the result of the previous run is integrated
in form of k additional training points given by the cluster centers Sum(A)/n(A)

of all clusters A found in the previous run, weighted by their multiplicity n(A).
This way, a single run over the hole data set is sufficient, whereby every patch
can be processed using only limited memory.

Since NG converges fast for (small) patches, an empirical value for the num-
ber of necessary epochs being

√
P for a data set of size P , the overall time

complexity is reduced from O(kN
√

N) for batch clustering to O(kN
√

P ), N
being the number of data points, k the number of clusters, and P the patch size,
thereby neglecting sorting (which is almost linear in later runs).

Since data points of early patches contribute only by means of the suffi-
cient statistics of clustering, the order of processing influences the final result.
However, it has been demonstrated in [3] that patch NG displays virtually no
difference in accuracy compared to batch NG, while drastically reducing time
and memory requirements.
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3 Parallel patch clustering

Standard patch clustering processes every patch sequentially. This can easily be
parallelized by assigning different patches to different processors. Afterwards,
the sufficient statistics of several parallel patches is merged for the next round.
This way, no communication between the processes is necessary during the patch
runs and the processes share their information by means of merged statistics after
every patch run. The principled algorithm is as follows, C denoting the number
of available parallel processing units:

init
repeat

distribute the next C patches Pi on the parallel processors
cluster the data sets Pi with batch NG independent and in parallel
calculate the sufficient statistics Si independent and in parallel
merge the statistics of all runs (∗)
add the merged statistics as additional points to all

parallel runs of the next patch iteration

Note that, by passing the sufficient statistics of the runs to all subsequent
parallel runs, full information of the already processed elements is available after
every merge step. In the merge step (∗), the result of C parallel runs has to be
summarized such that it can serve as additional input patterns for all parallel
runs in the next patch iteration. Several different strategies are possible:

(merge1) All cluster statistics (Sum(A), n(A)) are concatenated in a vector of
length kC. Since the points are passed to all parallel patches (i.e. they are
implicitly multiplied C times without subsequent averaging), their multi-
plicities are scaled by 1/C to prevent an exponential influence of points in
early patches. This procedure has complexity O(Ck).

(merge2) The cluster statistics are merged to a length k vector using a greedy
strategy, sequentially combining the two closest centers of two statistics
by means of the weighted mean. This procedure has complexity O(C ·k2).
Note that a length k vector could alternatively be obtained applying batch
NG to the sufficient statistics. Due to the comparably high complexity
O(C2k

√
Ck), this possibility was not further investigated.

We tested both merge strategies. The resulting clustering results are almost
identical, while their complexity is different, such that we choose (merge1) for
all intermediate runs and (merge2) to obtain the final k cluster centers (since
merge1 obviously results in Ck centers). Merging itself is implemented sequen-
tially, obviously, parallelization would be possible. The resulting parallel patch
clustering algorithm constitutes an approximation of single patch clustering,
since data patches are processed independently and in parallel instead of a se-
quential line. We will see in experiments that the resulting clustering results
remain almost the same for this very intuitive and flexible parallelization.

The implementation of parallel patch NG has been realized on a multipro-
cessor architecture (8 dual core machine) using Java 5.0 and its powerful API
for multi-threaded application. Each patch clustering is realized as a differ-
ent thread. A scheduler object retrieves, merges, and distributes the sufficient
statistics of the patches. For the realization, different design patterns for func-
tionalities such as data access and the clustering strategy are used.
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Fig. 1: 11 clouds data set given by a mixture of Gaussians, different sizes of this
multimodal two-dimensional data set are generated for testing.

4 Experiments

We tested parallel patch NG for an artificial multimodal data set (11 clouds, see
Fig. 1) and a large real life data set from KDD’98. In all cases, the neighborhood
range is multiplicatively annealed from 10 to 0. The number of epochs per patch
is chosen as 10. The number of clusters is 11 for the 11 clouds and 10 for the
KDD data set. The reported results are obtained by a ten-fold cross-validation.

4.1 11 Clouds
The clouds data set is a two dimensional data set as depicted in Fig. 1, given by a
mixture of isotropic Gaussians. We create three different sizes in order to test the
scalability of the algorithm. The smallest data set contains 110.000 data point
(45MB), the medium data set contains 1.1 million records (450MB), the large
data set contains 11.1 million data points (4.5GB). For evaluation purposes, we
label the data points with the number of the generating Gaussian and evaluate
the classification error of the resulting classifier. We test the influence of the
patch size P , which equals 1%, 5%, and 10%, respectively, of the data set in
three different settings, and the scaling with respect to the number of threads,
which is chosen between 1 and 6 (realized on different processors).

We observed the same behaviour of the parallel patch algorithm for settings
with different patch sizes due to a sufficient and fixed number of epochs, see

11 Clouds t avg (ms) var · 10−3 accuracy avg (%) var speed-up
batch 201565.48 82.7 99.80 0.18

1 thread 135308.96 82.7 99.80 0.18 1
2 threads 67703.35 116.1 99.79 0.18 1.9986
3 threads 45161.47 119.3 99.78 0.24 2.9961
4 threads 33907.87 122.1 99.76 0.26 3.9905
5 threads 27366.69 122.5 99.65 0.35 4.9442
6 threads 22631.55 123.6 99.54 0.41 5.9787

Table 1: Experimental results for the 11 clouds data sets, the average execu-
tion time (in ms) and the classification accuracy (in %) and the variances are
displayed for batch and patch NG. The average speed-up shows linear behavior.
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Fig. 2: Experimental results for the 11 clouds data sets: the average execution
time in milliseconds is displayed depending on the number of parallel threads.
The left graphics shows the scaling for different size data sets, the right graph
displays the differences of different patch sizes for the large data set.

Fig. 2. The averaged results are displayed in Tab. 1. For comparison, we also re-
port the result of standard batch clustering (using 15 epochs per run). The table
contains the average execution time in milliseconds and the classification error
for posterior labeling according to the generating Gaussian centers. Obviously,
a classification accuracy close to 100% is reached in all cases, i.e. parallel patch
clustering reliably detects all 11 cluster centers, showing only a very small de-
crease in the optimum positioning of the centers. For the parallelization of patch
clustering, close to linear relative speed-up can be observed as documented in
Tab. 1. A small overhead is caused by the merge strategy, which is of complexity
O(Ck). This is only a fraction of the overall execution time as can be observed
by the results. The classification accuracy is decreased by less than 0.3% in the
parallel implementation compared to full batch clustering.

4.2 KDD’98
The second data set stems from the 1998 KDD cup data mining contest. Data
contains 95412 records with 481 statistical fields giving information about peo-
ple who made charitable donations in response to direct mailing requests. We
selected 56 features from these fields including numerical features (e.g. donation
amount, income, age), date values (e.g. donation date, date of birth), and binary
values (e.g. income category). All data are preprocessed to numerical values with
zero mean and unit variance.

The performance and accuracy was tested in the same manner as beforehand,
whereby the mean quantization error is chosen as evaluation measure. As before,
virtually no difference could be observed for different patch sizes (ranging from
1% to 10% of the data). The average execution time and quantization error are
displayed in Tab. 2. A linear relative speedup can be observed for the parallel
implementation of patch NG, whereby the accuracy measured in terms of the
mean quantization error decreases by less than 0.3%.
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KDD’98 t avg (ms) var · 10−3 mean error var · 105 speed-up
batch 92486.48 16.7 0.44654820 0.118

1 thread 79848.54 744.9 0.44793333 0.118 1
2 threads 39097.12 28.9 0.44803743 0.119 2.0423
3 threads 25383.83 93.2 0.44795150 0.119 3.1456
4 threads 19048.41 19.0 0.44811113 0.119 4.1920
5 threads 15347.82 78.2 0.44800127 0.121 5.2026
6 threads 13548.37 46.9 0.44805333 0.121 5.8938

Table 2: Experimental results of the KDD data set, the average execution time
(in ms) and the mean quantization error are displayed together with the variance
and the average relative speed-up for parallel threads.

5 Discussion

We proposed a simple parallelization scheme for patch NG which displays almost
linear relative speedup while maintaining the classification accuracy of standard
batch NG. The algorithm is generically derived from the NG cost function, such
that it carries a wide potential for extensions towards further important settings,
including extensions of the cost function such as supervised NG or relational NG,
general implementation platforms and distributed settings, the incorporation of
dynamic growing schemes, extensions to non-stationary data distributions, and
the incorporation of additional functionality such as visualization.
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