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Abstract. Adapting stimuli to stabilize neural responses is an important
problem in the context of cortical prostheses. This paper describes two
approaches for stimulus adaptation using support vector regression (SVR).
One approach involves the solution of an inverse problem and it is shown
that for linear SVR an analytical solution exists. The proposed algorithms
are evaluated in conjunction with different preprocessing methods an three
datasets recorded from the barrel cortex of anasthesized rats.

1 Introduction

Cortical prostheses is a promising technology to aid people with defects in the
sensory system, but there are still a lot of problems to be solved by biomedical en-
gineers before their widespread application. For the visual system different pros-
thetic interfaces are conceivable [1] although the only help for severely impaired
patients is the direct stimulation of neurons in visual cortex. This stimulation,
which can be either intracortical [2] or epicortical [3], leads to the perception of
phosphenes of various sizes and at different locations in depth. Since the mapping
of activity from the retina to the cortical areas is retinotopic (preserves space
relations), stimulation at different spatial locations in visual cortex can be used to
construct simple shapes, e.g. letters, from single phosphenes [4]. Unfortunately
neural responses evoked by cortical stimulation may depend on functional brain
states, as for example the background activity of the brain is assumed to change
the signal transmission properties of neurons [5, 6]. To ameliorate these effects
one possible solution is the adaptation of stimulus intensities. As testing the
viability of this approach in human subjects is not possible recordings made
during micro-stimulation in the barrel cortex of anasthesized rats [7] are used in
this paper.

The remaining part of this paper is structured as follows. In section 2 a brief
description of the experimental setup for recording of data is described. Sec-
tion 3 gives a formal description of the adaptation problem and the approaches
proposed for its solution. Results for these approaches are presented in section 4
and summarized in section 5

∗The author was supported by DFG grant 441.
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2 Experimental setup

In each experiment nerve signals are recorded from rat barrel cortex with 20KHz
sampling rate while stimulation with a biphasic rectangular pulse occurs every
2s with different intensities in the range of 0.8, 1.6, . . . , 4.8nC. The spontaneous
neural activity and stimulus response for one trial is shown in figure 1 on the
right where the time-scale is centered on stimulation onset and the inset shows
the neural response in detail. All results given in section 4 are based on three
datasets recorded at cortical depths of 1218, 950 and 700μm.
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Fig. 1: Overview of the experimental setup for stimulation and recording from
rat barrel cortex (left). Spontaneous neural activity and response for stimulation
with 2.4nC (right).

3 Algorithms for stimulus adaptation

The direct solution for the adaptation of stimulus intensities is based on estimat-
ing a function f(x, y) �→ s, where x, y are the pre- and post-stimulus activities
of the neurons (figure 1, right) and s is the stimulation intensity. When f is
known the stimulus intensity for eliciting a certain target response y∗ can be
determined by evaluating f(x, y∗).

Although this is the most straightforward solution for the problem it is also
possible to first model the relationship between neural activity x and the stimulus
response y by estimating a set of functions f(x, s) �→ y and then finding function
g(x, y∗) �→ s for a desired target response y∗. In this case the function g is
the solution of an inverse problem. Since in both approaches support vector
regression [8] is used for estimating f and f respectively, the next section explains
how to find function g.
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3.1 Solving the inverse problem

Denote by fj(x′) = 〈w′
j , x

′〉+bj the j-th function in the set of functions f(x, s) �→
y, where the vector x′ = (s, x) is assumed to have the stimulus intensity as its
first component and similar w′

j = (ws
jwj). The solution to the inverse problem

is now given by minimizing the loss between f(x′) and a target response y∗

in dependece of s. In case of l2-norm loss this can be stated as the following
optimization problem

min
s

1
2
‖f(x′) − y∗‖2 s.t. l ≤ s ≤ u,

where l, u ∈ R are upper and lower bounds for the stimulus intensities. Since
the constraint can be enforced by a simple projection to the interval [l, u] the
unconstrained optimization problem can be directly solved for s.1 Let

h(s) =
1
2
‖f(x′) − y∗‖2 =

1
2

∑

j

(sws
j + 〈wj , x〉 + bj − y∗

j )2.

Computing the derivative and setting it to zero yields:

h(s)′ =
∑

j

(sws
j + 〈wj , x〉 + bj − y∗

j )ws
j

!= 0

⇔ s
(a)
=

∑
j(y

∗
j − 〈wj , x〉 − bj)ws

j∑
j(w

s
j )2

.

Since h(s)′′ =
∑

j(w
s
j )

2 ≥ 0 the value of s is a local minimum of h(s) and the
desired function g(x, y∗

j ) �→ s is given by evaluating (a).

3.2 Preprocessing

After linear scaling to the interval [−1, +1] the neural raw data is either band-
pass filtered between 1-200Hz (Butterworth order 2) to extract the local field
potential (LFP) or it is bandpass filtered between 300-6000Hz (Butterworth
order 3) followed by clipping of extreme values, rectification and low-pass filtering
at 100Hz to extract the multi-unit activity (MUA) [9]. To reduce dimensionality
LFP and MUA are down-sampled to 500Hz and then either binned 2 (100ms,
10ms bins) or projected onto the 50 most dominant principal components [10].
In addition the LFP is subjected either to a phase analysis using the Hilbert-
Transform [11] or a spectral analysis with power estimated in the α- (1-13Hz),
β- (13-30Hz), γ- (60Hz) and γh-band (60-100Hz) [9]. Figure 2 summarizes the
different methods and introduces the abbreviations used in section 4. These
preprocessing steps are applied to 1.5s pre- and 100ms post-stimulus data for
the direct approach and to 1.5s prestimulus data for the inverse approach. In
case of the inverse approach 20ms of post-stimulus data are low-pass filtered at

1This is possible since the objective function is convex with respect to s.
2In this context binning means computing the average across a certain time window.
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40Hz and then projected to a 10-dimensional principal component subspace to
represent the neural responses. All target values and the stimulus intensities are
scaled to the interval [0, 1] to speed up the model selection which is described in
the next section.
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Fig. 2: Summary of different preprocessing steps. Note that combined features
are denoted by “+” in the following, e.g. pca-lfp+mua means PCA coefficients
for LFP and MUA data.

3.3 Model selection

Regularization parameter C and loss function parameter ε of linear SVR are
selected by minimizing the minimum span bound [12, 13]. Since very large
values of ε van lead to an empty set of support vectors the algorithms described
in [14] is extended to include a simple backtracking scheme to avoid such regions
in parameter space.

4 Results

The prediction performance of the direct and indirect solution is evaluated on the
three datasets described in section 2. For each dataset 10 random partitions into
50% train and 50% test data are used to get a performance estimate. Detailed
results of both approaches in conjunction with different preprocessing steps are
shown in figure 3 for the first dataset. Table 1 summarizes the best results on
the test set for all three datasets.

For the examined datasets spectral analysis and phase analysis of the LFP
leads to less informative features in comparison with features extracted from
the LFP and MUA directly. With respect to the two approaches MUA features
work better for the inverse solution and LFP features for the direct solution.

Performance results indicate that both approaches are suitable for predicting
stimulation intensities when they are used with certain preprocessing steps. For
the direct approach results are slightly better in terms of RMSE for the second
and third dataset, although it is more sensitive with respect to the preprocessing
method. Another problem with the direct approach is its tendency to overfit the
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training data (e.g. figure 3, lfp) which is less severe when using the inverse
approach. This is not surprising since the inverse solution uses a set of linear
functions for predicting stimulus intensities while the prediction of the direct
solution is based on only one function.
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Fig. 3: Average performance of direct (d) and inverse (i) solution for predict-
ing stimulus intensities on 10 random train/test partitions of the first dataset.
Error-bars indicate standard deviations and the vertical line the best average
performance on the test dataset.

5 Conclusion

This paper introduced two solutions for a stimulus adaptation problem based
on linear SVR. Although both solutions yield similar performance results on
three different datasets the proposed approach based on the inverse solution
seems to be more robust with respect to over-fitting and selectio of a particular
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Direct Inverse
Prep. RMSE ρ2 Prep. RMSE ρ2

pca-lfp 0.21 ± 0.01 0.64 ± 0.03 bin100-mua 0.21 ± 0.01 0.67 ± 0.02

pca-lfp 0.15 ± 0.01 0.82 ± 0.01 bin10-mua 0.16 ± 0.01 0.84 ± 0.01

bin10- 0.17 ± 0.01 0.77 ± 0.02 bin100-mua 0.19 ± 0.01 0.74 ± 0.01

lfp+mua

Table 1: Best prediction results of direct and inverse solution with corresponding
preprocessing method for dataset 1-3 (top to bottom). RMSE = root mean
squared error. ρ2 = squared Pearson correlation coefficient.

preprocessing method. In future work these solutions will be tested not only on
offline data but also in an online feedback system, with the goal of stabilizing
neural responses by adapting stimulation intensities.
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