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Abstract. We present a computational model of amygdala neural networks. It is 
used to simulate neuronal activation in amygdala nuclei at different stages of 
aversive conditioning experiments with rats. Our model is based on 
neurobiological data. Simple formal neurons and an adaptive Hebbian rule are the 
key elements of the model. The results are compatible with neuronal activation 
maps obtained with C-Fos markers. The model also enables interesting predictions. 

1 Introduction 

In order to better understand the role of amygdala nuclei in drug addiction and 
weaning treatments, aversive experiments have been conducted with rats. A box with 
three compartments is used. Before experiments, rats are addicted to morphine. In the 
first stage, a rat is left in the first compartment without access to the others and a 
naloxone injection is undergone. During a few minutes, its moves become slow and 
awkward. The same experiment is repeated three times during a period of six days. 
Then, it is simply placed in the box and its behavior is observed. The rat tends to 
avoid the compartment in which it underwent the naloxone injection, thus proving the 
set up of an aversive conditioning. Since the role of amygdala nuclei is well known in 
aversive conditioning experiments, neuronal activity maps of that part of the brain 
have been obtained at different moments. We distinguish between two important 
nuclei of the amygdaloid complex: the basolateral one (BlA) and the central one 
(CeA). These maps are presented Figure 1. Many details of the experiments that have 
been conducted are not presented here. The reader can get more information from 
previous publications [2]. The problem we want to discuss here is the way we can 
determine and implement a computational model of the amygdala nuclei with 
sufficient details, so that it explains what is observed and it can be predictive for other 
experiments. In Section 2, we present different approaches in computational 
neuroscience and discuss the methodology that should be used for that problem. In 
Section 3, we give the specifications of the computational model and present our 
network. We finally provide some results in Section 4 and discuss the perspectives. 

2 Methodology 

In computational neuroscience, Perkel propose to distinguish among six different 
levels, according to the scale and the dynamics at which the problem is addressed [4]. 
The first levels are concerned with molecular chemistry and the study of dendrites, 
axons, synapses, or the dynamics of few neurons. 

403



 
Fig. 1: Left, just after the first naloxone injection, the CeA is strongly activated. 
Middle, during the aversive conditioning test, the CeA is poorly activated, while 

the BlA is more activated. Right, the activity map of a control rat is presented: that 
rat was also in the box but it did not undergo any naloxone injection. 

At level 5 and 6, typically the level addressed in that work, there are studies on the 
interaction and dynamics involving up to millions of neurons located in different 
regions of the brain. Moreover, we are not only faced with the problem of proposing a 
computational model of what is observed, but also with an implementation of it. The 
model should therefore be appropriately detailed and comply with practical 
computational constraints. However, how to take into account the interactions among 
millions of neurons during a large period of time? Do we have to consider feed 
forward networks or recurrent ones? What is the appropriate modeling scale in terms 
of number of neurons, types of neurons and architecture of the network? Do we have 
to consider a specific learning rule to integrate long term potentiation? Such questions 
are rather difficult and according to our knowledge, there is no consensus on the 
methodology to determine the right choices. We propose to clarify that methodology 
and to distinguish between three distinct computational levels: 
- The first objective should be to determine the computational sketch. It should 
describe the main principles explaining how information is processed in the different 
parts of the brain that are involved in the study. A computational sketch should be 
based on neuroscience information only.  
- Then a computational system should be determined. It corresponds to the 
specifications of a software program that tries to integrate the main principles of the 
computational sketch. The problem is that some assumptions have to be made to 
come up with the complexity of neurobiological models and the constraints of 
computer systems.  
- Finally, a computational implementation has to be performed. Every single variable 
has to be initialized, eventually according to a trial and error process. 

3 Computational model 

3.1 Computational sketch 

The computational sketch is generally proposed by neuroscientists. For the problem 
we address, the main principles are described below. We recall them briefly. More 
explanations can be found in [5] and [2]. 
- Neurons from the sensory cortex project onto the BlA. 
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- Neurons from another structure (thalamus?) also project onto the BlA and are 
activated in presence of naloxone. However, these neurons are not numerous and the 
presence of naloxone may inhibit other neurons of the BlA, which explains the poor 
activity of the BlA after naloxone injection. 
- A majority of neurons of the BlA are excitatory neurons but not all of them. 
- Neurons from the BlA project onto intercalated neurons, which are inhibitory 
neurons. 
- Intercalated neurons project onto the CeA, which is also essentially composed of 
inhibitory neurons. 
- Just after naloxone injection, the somatic part of the somatosensory cortex is 
strongly activated. It is believed that some neurons directly project onto the CeA, 
which explains the strong activity in the CeA.  This assumption has been added later 
and is not cited in [1]. 
- The association between the context and the naloxone injection is memorized in the 
BlA by means of long term potentiation. 
- Long term potentiation induces more neuronal activity in the BlA after conditioning. 

3.2 Computational system 

Different computational systems can be elaborated according to the specifications 
given in the computational sketch. It is precisely at this point that we have to choose 
between spiking neurons or other models of neurons [6]. Our choice is nevertheless 
guided by general considerations and unavoidable simplifications. Since we are faced 
with the difficult problem of modeling the activity of millions of neurons during a 
large period of time, we propose to consider a simplified network in which formal 
neurons correspond to a large group of neurons sharing roughly the same properties, 
especially their excitatory or inhibitory strength and their connections with other 
important group of neurons. The output activity of a neuron is thus classically given 
by an activation function (sigmoid) applied to the weighted sum of afferent neurons' 
activity. Moreover, the dynamics of the biological system is unknown and probably 
quite complex. Then how can we define the specifications of the dynamics of our 
artificial system? We propose another strong simplification: Information is processed 
in a feed forward network from the sensory cortex to the BlA and CeA. Our network 
is presented Figure 2. The relevance and acceptability of such simplifications are 
questionable. It is clear that the biological system does not work the same way, but 
some important properties might still be preserved. For instance, the learning process 
that enables aversive conditioning might well be induced by long term potentiation 
[2] and a similar mechanism can be integrated in the computational system with 
comparable properties. We propose a specific Hebbian rule for that mechanism[3]: 
the weight of a synapse connecting a context neuron and an excitatory neuron of the 
BlA is increased if and only if Nax1 is activated and the context neuron is also 
activated. We can note at this point that the Hebbian rule should not be applied if 
Nax1 is not activated, otherwise it would be possible to obtain aversive conditioning 
even in the absence of naloxone. That remark is very important, because it suggests 
that specific neurotransmitters might be responsible of long term potentiation. And 
though neuroscientists already had the idea, it was not expressed in the computational 
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sketch. It is in fact a property suggested by computational constraints (specifications 
of the Hebbian rule) for the design of the computational system.   
The architecture of the network has been determined according to the specifications 
given in the computational sketch. The number of neurons in each group has been 
determined in order to clearly see the increase of neuronal activity and to allow 
statistical computations (see the results Section 4). 
  

 
Fig. 2: Proposed computational system. Neuronal activity propagates from top to 
bottom. Squares are excitatory neurons and circles are inhibitory ones. Nax1 and 
Nax2 are activated in presence of naloxone, but according to different processes.  
ctxt1, ctxt2 and ctxt3 correspond to neurons from the sensory cortex: Only one is 

activated at a time, depending on which compartment of the box the rat is exploring. 

3.3 Computational implementation 

Although the structure of the network and the main specifications of the system have 
been defined, we are still far from an implementation of it. It is not possible to give all 
implementation details here and we believe that it is not that important. Indeed there 
probably exist many different implementations that would give similar results. What 
is more interesting is the methodology that has been followed. In the domain of 
classification with artificial neural networks, there is always a set of examples that 
can be used to train the network and find appropriate weights [6]. But we do not have 
many examples at hand, we just have three global activation maps and most weights 
are static and should not be changed. Then how to determine those weights? We 
propose a trial and error process. For a given configuration, for instance Nax1=1, 
ctxt1=1, ctxt2=0, ctxt3=0, Nax2=1, we want the BlA to be poorly activated and the 
CeA to be strongly activated. In fact, there are three configurations for which we can 
specify the neurons that have to be activated so that statistically we get similar 
activity maps. However, if we try to set some values according to one configuration, 
we might find that they are not compatible with another configuration. Even in a trial 
and error process, all methods are not efficient. We therefore suggest following a 
standard algorithm used to solve constraint satisfaction problems (CSP). Since we are 
facing here the problem of determining values of some variables, with respect to a set 
of constraints, our problem falls in the CSP category. In order to solve that problem in 
an efficient way, we have to set one variable at a time, from the most constrained to 
the less constrained one. This is what we have done. The strongest constraint concerns 
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the synaptic weights between context neurons and excitatory neurons of the BlA. 
Then the Hebbian rule is precisely defined. In our case, there is typically a 10% 
increase of the weight (up to a maximum) if all required conditions are satisfied. Once 
these weights are set, it is possible to determine the weight of inhibitory neurons of 
the BlA so that the BlA is poorly activated in presence of naloxone (without 
naloxone, Nax1 is not activated, so there is no constraint on the value of the weight). 
All parameters of the system have been determined that way. Exact values can be 
provided upon request. 

4 Results 

Since the parameters of the network have been determined according to expected 
global activation maps, there is no surprise that the simulation provides similar 
results. However, it is interesting to look at which neurons are activated depending on 
input configurations and to perform statistics. The results are presented Figure 3. The 
system can be used to predict the results of new experiments. For instance, what 
happens if the aversive conditioning experiment simultaneously takes place in two 
different compartments? According to our system, there is no interference between 
the two conditionings. Such a result has to be tested to check the validity of the 
model. 

5 Conclusion 

Neuroscientists proposed a model in computational neuroscience to explain the role of 
amygdala nuclei in aversive conditioning experiments. A methodological approach 
has been presented to determine a computational system from their computational 
sketch followed by a computational implementation. The system features are far from 
biological mechanisms, but some interesting properties might be preserved. Its 
instructive and predictive values deserve to be considered. 
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Test Network activity Simulated BlA  
and Cea activity 

Normal; rat in first 
compartment. 
Activity CeA: 1% 
Activity BlA: 19% 

 

 

After first naloxone 
injection; rat in  first 
compartment. 
Activity CeA: 54% 
Activity BlA: 8% 

 

 

After second 
naloxone injection; 
rat in first 
compartment. 
Activity CeA: 28% 
Activity BlA: 17% 

 

 

After third 
naloxone injection; 
rat in first 
compartment. 
Activity CeA: 27% 
Activity BlA: 25% 

 

 

After conditioning; 
rat in first 
compartment. 
Activity CeA: 1% 
Activity BlA: 33%  

Figure 3: Results. Neurons are highlighted when their activation is greater than 0.5. 
The activity of a group of neurons, BlA or CeA, is the sum of all neuron activities in 

that group. 
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