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Abstract. This paper discusses a machine learning approach for bi-
nary classification problems which satisfies the specific requirements of
safety-related applications. The approach is based on ensembles of local
models. Each local model utilizes only a small subspace of the complete
input space. This ensures the interpretability and verifiability of the local
models, which is a crucial prerequisite for applications in safety-related
domains. A feature construction method based on a multi-layer percep-
tron architecture is proposed to overcome limitations of the local modeling
strategy, while keeping the global model interpretable.

1 Introduction

Safety-related systems are systems whose malfunction or failure may lead to
death or serious injury of people, loss or severe damage of equipment, or en-
vironmental harm. They are deployed, for instance, in aviation, automotive
industry, medical systems and process control. This contribution discusses a
machine learning approach for use in safety-related problems, an application do-
main where a wrong decision cannot be rectified. A more detailed discussion of
this approach and its successful application to a real-world problem with high
safety-requirements can be found in [1]. Alternative approaches for handling
safety-related problems with machine learning methods are reviewed in [2].

In practical application tasks, the available training data is often too sparse
and the number of input dimensions is too large to sufficiently apply statistical
risk estimation methods. In most cases, high-dimensional models are needed to
solve a given problem. Unfortunately, such high-dimensional models are hard to
verify (curse of dimensionality), may tend to overfitting, and the interpolation
and extrapolation behavior is often unclear or intransparent. An example of
such counterintuitive and unintended behavior is illustrated in Fig. 1, where the
prediction of the model changes in a region not covered by the given data set.
Such behavior becomes even more likely and much more difficult to discover in
the high-dimensional case. Thus, a model building method is required which
provides a well-defined interpolation and extrapolation behavior1.

The crucial aspect is to find a suitable trade-off between the generation of
an interpretable and verifiable model and the attainment of a high predictive

1“Well-defined” states here that the decisions of the learned models can exactly be deter-
mined for every point of the input space.
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Fig. 1: Counterintuitive extrapolation behavior in a region not covered by the
data set. This two-class problem is solved by a support vector machine (SVM)
with an acceptable classification performance on the given data. However, in a
region not covered by any data the decision of the SVM changes arbitrarily.

accuracy. It is obvious that complex models will be able to achieve a better
performance on the available data. However, a higher complexity will lead to an
increased effort for model verification.

The paper is organized as follows: Sect. 2 describes the local modeling stra-
tegy for safety-related domains. In Sect. 3 a feature construction method based
on a multi-layer-perceptron architecture is presented to overcome limitations of
the local modeling approach. An illustrative example is discussed in Sect. 4 and
Sect. 5 concludes.

2 Local Modeling

This section discusses an approach utilizing the advantages of local modeling to
deal with safety-related problems. The classification method, which was intro-
duced in [1], is motivated by Generalized Additive Models [3, 4], and Separate-
and-Conquer approaches [5]. This approach is designed to find an estimate of
the unknown function f : V n → Y , where V n =

∏n
ı=1 Xı with Xı ⊆ IR and

Y = {0, 1}, given an observed data set: D = {(�v1, y1), ..., (�vm, ym)} ⊂ V n × Y .
Basic Idea. The method introduced in the following is a greedy approach to
find an additive estimate of the unknown function f : V n → {0, 1}. It is based on
the projection of the high-dimensional data on low-dimensional subspaces. Lo-
cal models are trained on these subspaces. By regarding only low-dimensional
subspaces a visual interpretation becomes feasible and, thus the avoidance of un-
intended extrapolation behavior is possible. The ensemble of local models boosts
the overall predictive accuracy and overcomes the limited predictive performance
of each single local model, while the global model remains interpretable.
Projection of High-Dimensional Data. The projection π maps the n-
dimensional input space V n to an arbitrary subspace of V n. This mapping is
determined by a given index set β ⊂ {1, ..., n}. The index set defines the dimen-
sions of V n that will be included in the subspace Vβ . Thus, the projection π on
the input space V n given the index set β is defined as: πβ(V n) = Vβ =

∏
ı∈β Xı.

Local models. The j-th local model is defined as: gj : πβj
(V n) → {0, 1},

where βj denotes the index set of the subspace where the classification error of
the local model gj is minimal. The final function estimate f̂ of the global model
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Algorithm 1 Building an ensemble of local models.
parameter: D – data set; cpref – label of preferred class; dim limit – limit of dimensions (fixed)

function models := build model(D, cpref)
solve ∀(�v, y) ∈ D : min {|y − g(πβ(�v))|}, β ⊂ {1, ..., n} s.t.

|β| = dim limit and ∀y = cpref : |y − g(πβ(�v))| = 0
Dnew := {(�v, y)|g(πβ(�v)) = cpref}
if (D \ Dnew �= ∅)

models := {g(πβ(·))} ∪ build model(Dnew, cpref)
else

models := ∅

fi

Algorithm 2 Classifying new samples with an ensemble of local models.
parameter: �v ∈ V n – new sample data point; models – set of models returned by Algorithm1

function class := evaluate model(�v, models)
class := maxgj∈models gj(πβj (�v))

is determined by the aggregation of the results of all local models gj(πβj
(�v)).

The summation of the original Generalized Additive Model is replaced by an
appropriate aggregation function, e.g. the max-operator of Algorithm 2.
Ensemble of Local Models. This method incorporates prior knowledge about
the subgroups of the given problem and avoids hierarchical dependencies of the
local models. It is required that the so-called preferred class cpref must not
be misclassified by any of the trained local models. This requirement typically
leads to imbalanced misclassification costs. The local models are trained on low-
dimensional projections of the high-dimensional input space with the goal to
avoid the misclassification of the preferred class. A wrapper method for feature
selection is used to determine the best projections. The local models greedily
separate the samples of the other class from the preferred class samples. Missed
samples of the other class are used to build further sub-experts. The algorithms
for building such an ensemble of local models and for evaluating a new sample
�v ∈ V n are shown in Algorithm 1 and Algorithm 2, respectively.

3 MLP-based Feature Construction

As demonstrated in [1], the ensemble of local models shows a good performance
on real-world applications but there are problems that cannot be solved with
the restriction to two- or three-dimensional local models. To overcome this limi-
tation, a feature construction method based on a multi-layer perceptron (MLP)
architecture is developed that generates low-dimensional linear combinations.
The additionally generated input dimensions can be interpreted as preceding soft
classifiers. The original input dimensions V n = X1×X2×...×Xn are used in the
input layer and the target variable Y is used in the output layer. The hidden layer
of this network consists of n(n−1)/2 nodes hidden(i,j), where i, j ∈ {1, ..., n} and
i < j. Each hidden node is only connected to two of the original input dimen-
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Fig. 2: MLP for feature construction.

sions. The connections from the hidden to the output layer are set to 1 and are
fixed during the network training procedure. This MLP architecture is depicted
in Fig. 2. Due to this design, the network is forced in the hidden layer to find lo-
cal classifiers on the given input dimension. The resulting weights of the hidden
neurons can be used to build additional input dimensions. An additional input
dimension is generated by: Xnew

(i,j) = tanh(Xi · whidden
(i,j) + Xj · whidden

(j,i) + bhidden
(i,j) ),

where Xi,Xj are original input dimensions, whidden
(i,j) is the connecting weight of

input dimension Xi to hidden neuron hidden(i,j), and bhidden
(i,j) is the bias of the

hidden neuron hidden(i,j). The additional input dimension Xnew
(i,j) can be seen as

a preceding soft classifier.
Using all n(n − 1)/2 additional input dimensions drastically increases the

effort to determine the best projection of the data set. Thus, it is necessary to
reduce the number of additional input dimensions by choosing only the “best”
hidden neurons as additional input dimensions for the ensemble learning method.
For instance, such selection can be performed by choosing the hidden neurons
which are most correlated with the target variable.

4 An Illustrative Example

The Cubes data set is generated from four Gaussian components in a three-
dimensional space. For each Class 1 cluster 50 samples are drawn from N(ei, 0.2·
I), where ei is a unit vector and I is the identity matrix. 100 samples of the
Class 0 cluster are scattered around the origin, drawn from N((0, 0, 0)T , 0.2 ·I).
All local models are trained as support vector machines (SVMs) with Gaussian
kernel and the parameter set γ = 0.2 and C = 5.
Ensemble of Local Models. Class 0 is selected as the preferred class,
cpref = 0, i.e. this class must not be misclassified by any of the learned local mo-
dels. In the example, this can be achieved by using imbalanced misclassification
costs for Class 1 and Class 0, where the misclassification penalty of Class 0
is ten times higher than for Class 1. At the initial state, all two-dimensional
projections of the Cubes data set are very similar. The best local model g1,
see Fig. 3(a), uses the projection πβ1(�v) with β1 = {1, 2}. 53 data points from
Class 1 are misclassified by this local model. Thus, in the next iteration new
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(a) 1st local model g1 (β1 = {1, 2}). (b) 2nd local model g2 (β2 = {2, 3}).
Fig. 3: The ensemble of local models and the Cubes data set: Class 1 samples
are marked with blue circles and Class 0 samples are marked with red crosses.
The decision boundary is labeled with zero and the margin of the SVM model
is labeled with -1 and 1.

local models are trained only on samples, which are predicted as Class 0 by the
first local model: Dnew = {(�v, y)|g1(πβ1(�v)) = 0}. In Fig. 3(b) the projection
πβ2(�v) with β2 = {2, 3} of the data set Dnew and the corresponding local model
g2 are shown. This local model misclassifies four Class 1 samples. Further im-
provements with the given parameter set are not possible. The final additive
model is f̂(�v) = g1(πβ1(�v)) ∨ g2(πβ2(�v)). Avoiding the misclassification of the
preferred class cpref = 0 leads to four misclassified Class 1 samples.
Feature Construction. By choosing Class 1 as preferred class, cpref = 1, it
becomes infeasible to solve the Cubes problem by an ensemble of local models
with the restriction to two-dimensional submodels. In this case, the samples of
the preferred class have a strong overlap with the samples of the other class in
all two-dimensional projections. This problem can be solved by applying the
feature construction method described in Sect. 3. Thus, it becomes possible to
solve the Cubes problem with cpref = 1 by a single two-dimensional local model.
This local model is depicted in Fig. 4(a). It incorporates the original input di-
mension X1 and the additionally generated input dimension X4 = Xnew

(2,3), which
is depicted in Fig. 4(b). This additional input dimension can be seen as preced-
ing soft classifier that separates most of the Class 1 samples from the Class 0
samples. The resulting local model misclassifies only four Class 0 samples – fur-
ther improvements are not possible. The performance of this solution is similar
to the ensemble of local models with Class 0 as preferred class.

5 Conclusions

To be able to apply machine learning approaches in the field of safety-related
problems it is crucial to provide interpretable and verifiable models. Since it is
infeasible to sufficiently interpret high-dimensional models, such complex models
are not applied to safety-related applications. On the other hand, simple models,
which are easier to interpret, show a lack of predictive performance.
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(a) 1st local model g1 (β1 = {1, 4}). (b) Additional input dimension X4.

Fig. 4: Feature construction for use with the ensemble of local models and the
Cubes data set: Class 1 samples are marked with blue circles and Class 0
samples are marked with red crosses. The decision boundary is labeled with
zero and the margin of the SVM model is labeled with -1 and 1.

The binary classification approach discussed in this paper provides a good
trade-off between the interpretation and verification of the learned (local) mo-
dels, avoiding an unintended extrapolation behavior, and the achievement of
a high predictive accuracy. Each local model can be interpreted visually and
the ensemble of the local models compensates for the limited predictive per-
formance of each single local model. The local models can be evaluated by a
domain expert to avoid unintended extrapolation and interpolation behavior.
In contrast to dimensionality reduction methods, which combine several dimen-
sions of the input space, the local models are trained on the original dimensions,
allowing the experts to directly evaluate the trained models. For problems that
cannot be solved with the restriction to low-dimensional local models, the MLP-
based feature construction method can compensate for this limitation of the
local modeling procedure while the models remain interpretable. The addition-
ally generated input dimensions can be regarded as preceding soft classifiers.
The described approach has successfully been deployed in a safety-related appli-
cation in the area of automotive safety electronics [1]. Currently, the introduced
classification approach is being extended to also solve multi-class problems.
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