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Abstract. In this paper, we propose a new methodology to build latent
variables that are optimal if a nonlinear model is used afterward. This
method is based on Nonparametric Noise Estimation (NNE). NNE is pro-
viding an estimate of the variance of the noise between input and output
variables. The linear projection that builds latent variables is optimized in
order to minimize the NNE. We successfully tested the proposed method-
ology on a referenced spectral dataset from food industry (Tecator).

1 Introduction

Data from spectrophotometers form vectors with a large number of exploitable
variables. Building quantitative models using these variables most often requires
using a smaller set of variables than the initial one. Indeed, a too large number
of input variables to a model results in a too large number of parameters, leading
to overfitting and poor generalization abilities. Partial Least Squares Regression
(PLS-R, [1]) has been successfully used to deal with a large number of input
variables that are, moreover, near-collinear. In PLS-R, the input variables are
linearly projected onto latent structures where the data are assumed to reside.
The projection is performed to maximize the non-redundant information needed
to build a linear regression model. Specifically, the basic Partial Least Squares
formulation combines linear dimension reduction and regression by minimizing
correlation between inputs and maximizing covariance with the output.

In practice, PLS-R provides good reference models. However, it is limited
when the input-output relationship is nonlinear. In fact, the latent variables
that are built by PLS-R are only optimized in order to provide the best input
variables if a linear model is assumed. Their optimality is not straightforward
when the intrinsic nonlinearities have to be reconstructed using other regression
techniques like Least-Squares Support-Vector Machines (LSSVM, [2]) or Multi-
Layer Perceptrons (MLP, [3]).

In this paper, we propose a new approach to the construction of latent vari-
ables that are optimal if a nonlinear model is used afterward. The method is
based on Noise Variance Estimation (NNE, [4]). The NNE provides an estimate
of the variance of the noise between input and output variables, or equivalently,
an estimate of lowest Mean Squared Error (MSE) that can be achieved by a
regression method without overfitting the data. Thus, the NNE is an optimal
criterion for either selecting a subset of original inputs or building new latent
inputs. In this work, the minimization of the NNE is used to learn a linear pro-
jection matrix and build a new set of latent variables with predictive properties.
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The paper is organized as follows. In Section 2, the algorithmic part of the
study is briefly overviewed and the approach to building latent variables is out-
lined in the context of spectroscopic modeling. For brevity, Section 3 is restricted
to illustrate only one referenced spectral application from food industry [5].

2 Methodology

For completeness, this section briefly overviews the tools used in the study
(namely, the Delta Test, linear projections and an Extended Forward-Backward
variable selection) and presents a specific application to spectroscopic modeling.

2.1 Nonparametric Noise Estimation with the Delta Test

Delta Test (DT) is a technique for estimating the variance of the noise or, equiv-
alently, the Mean Square Error (MSE), that can be achieved by a regression
model without overfitting; see [4] and references therein. As such, the DT is
useful for evaluating the nonlinear correlation between two random variables
and can be included in variable selection schemes: the set of inputs minimizing
the DT is the one that is to be retained.

Given N input-output pairs: (xi, yi) ∈ R
d × R, the relationship between

xi and yi is modeled as yi = f(xi) + ri where f is the unknown function to
be estimated and ri is the noise. The Delta Test is a data-derived method to
estimating the variance of the noise in such a setting. Denoting by xNN(xi) the
first nearest neighbor of point xi in the set {xi}N

i=1 and yNN(xi) the associated
output, the Delta Test, δ, formulates as:

δ =
1

2N

N∑

i=1

||yNN(xi) − yi||2. (1)

2.2 A Projection based on the Delta Test

Linear projection is a common preprocessing step in both function approxima-
tion and classification tasks. When regression is to be performed, the aforemen-
tioned PLS-R, as well as other methods like Principal Components Regression
(PCR), are two standard approaches based on the idea of combining the original
variables by projection. Both methods project the original input variables onto a
latent space with reduced dimensionality; in PCR, the projection is constructed
in order to keep a maximum of information from the input variables, whereas
PLS-R builds new inputs that are also suitable to approximate the output, [1].

This subsection illustrates an efficient strategy to use the Delta Test as a
tool to select an optimal linear projection of the original input variables. Being
based on the DT, the strategy is mostly suitable when a nonlinear model is used
to reconstruct the relationship between the new latent inputs and the output.

For N input-output pairs, (x, y) ∈ R
d × R, a new set of inputs z is given as:

z = xP, (2)
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where P is the projection matrix. According to Delta Test, the best set of latent
variables z is found as the one that minimizes:

δ =
1

2N

N∑

i=1

||yNN(zi) − yi||2, (3)

where yNN(zi) is now the output for zNN(zi). Thus, we define an optimal P as:

Popt = arg min
P

1
2N

N∑

i=1

||yNN(zi) − yi||2, (4)

Unfortunately, the optimization for Popt is difficult because the Delta Test
is not differentiable with respect to P; the discontinuity is due to the fact that
the Delta Test estimates the variance of the noise based on nearest neighbors.

In order to optimize for Popt, an Extended Forward-Backward optimization
technique can be used. Forward-Backward Selection (FBS) is a commonly used
strategy for variable selection. The method is fast but there is no guarantee
that the optimal set of variables is found [3]. In FBS, each variable can be
in two states: ”1”, meaning that it belongs to the set of selected variables or
”0” meaning that it does not and it is temporarily discarded. Given a certain
initial state for all variables, the procedure flips the state of each variable at a
time and computes a predefined criterion (for example, the Delta Test). The
flipping operation that improves performances the most is accepted, and the
states are flipped again (excluding the previously accepted change). The process
is continued until no improvement is found.

FBS can be extended to any optimization problem for which the importance
(or level) of a variable is searched; that is, instead of switching scalars from 0
to 1 or vice versa, by increasing (in case of forward selection) or decreasing (for
backward selection) by regular steps 1/h. In this study, we suggest an application
of extended FBS schemes to the problem of optimizing the projection matrix P.

In general, we assume that the initial variables have been normalized, then
we assume that the values of P can be bounded by −1 and 1. In practice,
a degree of discretization h = 10 is also found to be accurate enough. For a
projection onto a 2-dimensional space, the procedure can be summarized as:

1. initialize the first column of P;

2. optimize the first column of P by FBS from DT in the projected space;

3. initialize the second column of P;

4. optimize the second column of P by FBS with the first column unchanged.

The data projected onto a 2-dimensional latent space are easily displayed and
initially used to investigate their structure in the input space, being the visual-
ization supervised by the output. If visualization is not the main concern, the
procedure can be extended to additional columns of P (e.g., until no significant
decrease of the Delta Test is observed) and then used to estimate the output.
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2.3 Methodology for Spectrometric Modeling

The forward backward selection has been previously tested in order to optimize
a projection matrix when the criterion is the minimization of the Delta Test.
Unfortunately, the method is converging and the results are satisfactory only if
the number of variables is small (approximately, 20 variables).

In order to approach such a restriction, we suggest to use the PLS-R as a
preprocessing step; thus, allowing a preliminary reduction in the dimensionality
of the original problem. The number of latent variables to be retained after
performing PLS-R should be a compromise capable to conserve most of the
information exploitable by a nonlinear method, but also small enough in order to
be able to perform the minimization of the Delta Test. Notice that the number
of variables retained from PLS-R is, however, not critical when the choice is
conservative; in our experiments, we found that retaining twice the number of
latent variables obtained from a cross-validated PLS-R is typically appropriate.

For problems preprocessed by PLS-R, the procedure can be summarized as:

1. build a PLS-R model between the inputs and the output. For a model
cross-validated for k1 latent directions retain as many as 2k1;

2. project the data x onto the space spanned by the first 2k1 PLS-R directions:

z1 = xP1. (5)

Here, P1 denotes the the projection matrix associated to PLS-R;

3. perform FBS in order to find a second projection matrix P2 such that the
DT between the final set of latent inputs and the output is minimized:

P2 = min
P

1
2N

N∑

i=1

||yNN(z1,i) − yi||2, (6)

4. project z1 onto the space spanned by the directions optimized from DT:

z2 = z1P2. (7)

The linearly projected data z2 = xP1P2 = xP are then used to calibrate any
nonlinear model to estimating the output y. In our experiments, the Least-
Squares Support-Vector Machine for regression (LSSVM, [2]) is adopted.

3 Experimental

The Tecator dataset is a referenced problem in spectroscopy [5] for predicting
the fat content of 215 observations of minced meat samples from Near-Infrared
(NIR) absorption spectra. The input spectra consists of 100 near-collinear vari-
ables corresponding to the absorbance of the meat sample measured in the cor-
respondence of 100 light wavelengths ranging from 850 to 1050 nanometers. The
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output fat content ranges from 0.9 to 49.1 percent and it is measured in labo-
ratory. Based on the dataset guidelines, the first 172 observations are used as a
learning set L and the remaining 43 are used as a test set T to assess the final
regression model. The input spectra are illustrated in the left panel of Figure 1.
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Fig. 1: A selection of input spectra (left) and the fat content with respect to
the one-dimensional projection (right). In the right panel, dots (·) correspond
to the projection of the learning set and the diamonds (�) to the testing set.

In the case of Tecator data, the number of latent variables that is found op-
timal by cross-validation for a PLS-R model equals 4. According to the method-
ology presented in Subsection 2.3, we have projected the initial input variables
onto the space corresponding to the first 8 latent directions. Then, the FBS is
used to optimize the 1D projection; the left panel in Figure 1 depicts the fat con-
tent against the 1D input projection. From the figure, it can be noticed that the
learning and the testing set show an identical behaviour, being projected to the
same region. Such a behavior probably indicates that no overfitting in the pro-
jection process has occured. It is also interesting to notice that the relationship
between the output and the input is not totally linear.

These observations show the qualitative advantage of projecting onto a very
low-dimensional space. The projection matrix P2 from the optimization is:

P2 = (0.1 − 1 − 0.5 − 0.5 0 0.1 0 0)�, (8)

where only the second, third and fourth latent variables appear to be important
for the problem. It is worthwhile noticing that the reduced importance of the
first variable was already observed for this dataset. Additionally, the result
corroborates the number of latent variables cross-validated for the PLS-R.

In conclusion, LSSVM models between the projection variables and the out-
put are build. The prediction results (Table 1) are compared to other methods
reported in literature using the testing set and 2 different measures: the MSE
and the Normalized Mean Square Error (NMSE). The obtained accuracies clearly
indicate the advantages of coupling optimized projections to a nonlinear model.
Specifically, using LSSVM reduces the MSE by a factor of 3 to 5 when compared
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to any linear model. Moreover, the application is computationally sustainable;
for the presented case study, the optimization is performed in 1 minute and the
calibration of the LSSVM in 2 minutes using a desktop computer.

Method N. of variables MSET NMSET

PLS-R 100 (8) 4.45 0.0274
Projection to 1 dim. + LS-SVM 1 (8) 1.35 0.0083
Projection to 2 dim. + LS-SVM 2 (8) 0.85 0.0052

Table 1: Results for the Tecator. Number of latent variables given in parenthesis.

4 Conclusions

This study presented an alternative approach to build a nonlinear model in the
context of spectroscopic modeling. The methodology is based on the optimiza-
tion of a linear projection that reduces the number of latent variables. The
optimality criterion is an estimate of the variance of the noise using the Delta
Test. The resulting projection matrix is suitable for any nonlinear model to
be used afterward. Based on our results, the main advantages of the suggested
methodology can be summarized as: 1) accurate results in the presence of non-
linearities; 2) reduced computational burden and 3) projection on 1-2D spaces
where the data can be be visualized, outliers detected and the degree of nonlin-
earity assessed. As a concluding remark, we point out that, for linear problems,
the approach can be used to validate the number of latent variables. It is our
future goal to improve the strategy used for the optimization.
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