
Safe Exploration for Reinforcement Learning

Alexander Hans1,2, Daniel Schneegaß1,3, Anton M. Schäfer1,4, and Steffen Udluft1
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Abstract. In this paper we define and address the problem of safe
exploration in the context of reinforcement learning. Our notion of safety is
concerned with states or transitions that can lead to damage and thus must
be avoided. We introduce the concepts of a safety function for determining
a state’s safety degree and that of a backup policy that is able to lead
the controlled system from a critical state back to a safe one. Moreover,
we present a level-based exploration scheme that is able to generate a
comprehensive base of observations while adhering safety constraints. We
evaluate our approach on a simplified simulation of a gas turbine.

1 Introduction

Reinforcement learning (RL) [1] is a type of machine learning to solve optimal
control problems. The main goal is to find a policy that moves an agent optimally
in an environment that is generally assumed to be a Markov decision process
(MDP). In most RL tasks one is interested in maximising the return, i.e. the
long-term reward accumulation.

While the application field of RL is manifold, in this paper we focus on the
optimal control of industrial plants. Through simulations it could be shown
that data-efficient RL methods are able to optimise complex industrial systems
with a feasible number of interactions [2]. However, when the agent begins to
interact with a real system, built for production use, the question arises if and
how one can make sure that the exploration of the state-action space does not
cause damage to the plant. For those environments a method is needed that
does not only explore the state-action space, but does it safely.

In the following we propose a method for safe exploration. We introduce
two fundamental components: a safety function to determine a state’s degree of
safety as well as a backup policy that is able to lead the system from a critical
state back to a safe one (sec. 2). Using these two components, as it turns
out, safe exploration is basically solved. Additionally, we present a level-based
exploration scheme that guarantees a comprehensive base of observations and
thus high-quality exploration results. In the remainder of this paper we follow
the concepts and notations introduced in [1].
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2 Safe Exploration

There already exist some contributions that deal with risk and uncertainty in
RL. However, we consider safety in the sense of the existence of undesirable
states or, more generally, transitions that must be avoided as they can lead to
damage. On first sight, works as [3, 4, 5] seem to be similar to ours. However, if
the MDP is deterministic, those approaches collapse to standard RL methods.
Moreover, they assume that the system dynamics are known or they tolerate
undesirable states during exploration. To the best of our knowledge, the only
approach also explicitly covering exploration in safety-critical environments is
apprenticeship learning [6], which relies on a teacher that must act safely and
preferably near-optimally in order to achieve good policies.

We define (i) a transition (s, a, r, s′) to be fatal if the corresponding reward r
is less than a given safety threshold τ ; (ii) an action a to be fatal in state s if it
leads to a fatal transition (s, a, r, s′) with positive probability; (iii) a state s to
be supercritical if there exists no policy π that can, starting from s, guarantee
that no fatal transition will ever occur; (iv) an action a to be supercritical in
state s if it leads to a supercritical state s′ with positive probability; (v) a state
s to be critical if it is not supercritical and there is at least one supercritical
or fatal action; (vi) an action a to be critical in state s if it is neither fatal nor
supercritical but leads to a critical state s′ with positive probability; (vii) a state
s to be safe if it is neither critical nor supercritical; (viii) an action a to be safe
in state s if it is neither fatal, supercritical, nor critical, and (ix) a policy π to
be safe if for all critical states s it leads to a safe state s(n) after a finite number
n of non-fatal transitions (s(i), π(s(i)), r(i), s(i+1)) and applies only safe actions
a = π(s(i)) within safe states s(i).

Conventional exploration methods like random, ε-greedy, or Boltzmann ex-
ploration are not safe. Due to their random component of action selection, there
is a certain chance of exploring fatal transitions. This is particularly unavoidable
if the optimal policy is not safe. For an RL problem to be safely explorable, we
require the following: (1) There exist safe policies w.r.t. the MDP and (2) the
exploration starts in a safe state.

3 Necessary Components

In addition to the mentioned requirements, we identified two essential compo-
nents for safe exploration: a safety function and a backup policy. To combine
these, a level-based exploration scheme is presented.

3.1 Safety Function

Our objective is to never observe supercritical states. From a critical state the
agent can return to a safe state if it acts safely. Prior to execution of an action
its safety should therefore be estimated by means of a safety function. Thus, the
safety function must give information on the safety of an action a in a state s.
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In practical applications a safety function can hardly be specified in advance.
Therefore, it is required to learn one from already collected exploration data.
A possibility for this is to estimate the minimal reward rmin that would be
observed when executing an action and afterwards following the backup pol-
icy (min-reward estimation). For this purpose, min-reward samples (s, a, rmin),
which depend on the backup policy π, are collected during exploration and used
to estimate a min-reward function Rπ

min(s, a). If its estimator’s extrapolation
capabilities are sufficient, it is possible to estimate rmin of not yet explored
state-action pairs.

3.2 Backup Policy

The backup policy’s task is to lead the agent back to an already known and
safe area of the state space, i.e. an area with only safe states. It is activated
when during exploration the agent reaches an unknown state and thus is unable
to choose a safe action. It is important that the backup policy provides safe
actions and hence does not lead to critical states. To take the agent back to a
known area, it is useful that it tries to approach a stationary point or area.

For existing plants that are already operated without the use of RL methods
often a basic controller is available. Provided this controller acts safely it may
be used as a backup policy. Otherwise, one has to be learnt from observation
data, i.e. (s, a, r, s′) tuples.

Due to our assumption that fatal transitions are defined by the reward level,
an obvious approach is to use conventional RL methods to generate a backup
policy. However, an optimal policy is not necessarily a safe one. Therefore, we
propose to learn the backup policy with an altered Bellman optimality equation
that does not maximise the expected sum of rewards, but the minimal reward
to come:

Q∗
min(s, a) = min

s′
min

[
Ra

s,s′ , max
a′

Q∗
min(s′, a′)

]
. (1)

Using dynamic programming [1] one can calculate a (non-trivial) solution that
fulfils equation 1 and derive a policy that acts greedily w.r.t. Q∗

min.

3.3 Level-based Exploration Scheme

Utilising the safety function and the backup policy, the problem of safe explo-
ration is essentially solved. However, to make the exploration as safe as possible,
it seems advisable not to move arbitrarily through the state space, but to expand
the explored area only gradually starting from a safe area. We use a level-based
approach to realise this kind of gradual exploration. Every state is assigned a
level l. For the starting state s0 the level is set l(s0) = 0. If a new state st+1 is
found resulting from exploring an action in state st, the level of the new state is
set l(st+1) = l(st)+1. If a new state st+1 is found while using the backup policy,
the level is kept: l(st+1) = l(st). Using this concept the exploration proceeds
level-wise. Starting with level 0, the agent tries to explore all actions considered
safe (by the safety function) of all states of the respective level. When there are
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no more explorable actions for the current level, it is increased. This is repeated
until there are no more explorable states left or some other abort criterion is
met, e.g. a sufficient number of observations to derive a policy with aspired
quality.

For this exploration scheme some sort of path planning is needed that allows
the agent to reach a certain state with explorable actions left. A straightforward
solution to this problem is a graph-based approach. While exploring, a graph
is built. The graph’s nodes represent the states, edges represent transitions
between states, the action to trigger a transition is noted as edge label. Here,
one can find paths to a certain state by means of a path search on the graph.
Unfortunately, this approach is only suited for deterministic MDPs with a small
number of states. To circumvent this problem one can aggregate states to clusters
and use those as nodes. However, path searching on the new graph is not possible
since there might be multiple edges for a specific state and action. As a solution
we use standard RL for path planning: An MDP is defined with the clusters
as states, actions are the same as for the original MDP, the reward function is
Ra

s,s′ = 1 if s′ is a target state and Ra
s,s′ = 0 otherwise. For the resulting MDP

an optimal policy is determined and followed until a target state is reached. This
approach is also applicable if the original MDP is stochastic.

4 Experiments: The BurnSim

For the analysis and evaluation of safe exploration we developed the Burn-
Sim benchmark which is motivated by an actual problem in the context of
gas turbine control. One is interested in operating a turbine with maximum
power output. However, when operating at high output undesirable dynamics
in the combustion chamber occur, i.e. a “humming” that can damage the tur-
bine if becoming too heavy. Therefore, one should try to maximise the output
while at the same time keeping the humming at a low level. The state space
S := {(f, h)|f ∈ [0, 1], h ∈ [0,∞)} includes fuel and humming, the available ac-
tions are A := {decrease, keep, increase}. The system dynamics are as follows:

ft+1 =

⎧⎨
⎩

ft − 0.05, if a = decrease ∧ ft − 0.05 ≥ 0
ft + 0.05, if a = increase ∧ ft + 0.05 < 1
ft, otherwise

ht+1 = max
(

2ft+1ht,
ft+1

5

)

The reward only depends on the successor state st+1 = (ft+1, ht+1):

rt = 4f2
t+1 −

(
ht+1−ft+1/5

5

)2

. The safety threshold is τ = −1, hence rt ≥ −1 ⇒
transition (st, at, rt, st+1) is not fatal; rt < −1 ⇒ transition (st, at, rt, st+1) is
fatal. The exploration’s aim is to gather enough data to determine a good policy
without ever observing a reward less than −1. The particular difficulty with the
BurnSim is that many states which seem safe in terms of the current reward are
in fact supercritical because they inevitably lead to a fatal transition.
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4.1 Implementation

We implemented a safety function, two variants of the backup policy (pre-
specified and learnt), and exploration with graph-based as well as RL-based path
planning. The safety function is determined by a local-quadratic least-squares
estimation of the min-rewards, i.e. on the features Φi = (fi, hi, f

2
i , h2

i , fihi, 1),
whenever a min-reward value for a state-action pair (s, a) must be estimated.

The pre-specified backup policy, which represents an already existing sub-
optimal, but safe controller, chooses actions w.r.t. f : ‘increase’ if f ≤ 0.4 and
‘decrease’ otherwise. In addition, a backup policy was learnt using the altered
Bellman optimality equation (eq. 1). The observations used to determine the
backup policy were generated by a teacher (inspired by apprenticeship learning
[6]). During the subsequent autonomous exploration the backup policy was fixed.

The level-based exploration was implemented as explained previously. To
be able to use the graph-based approach, the size of the MDP’s state space
is reduced by intrinsically rounding humming to 1/50 accuracy with each time
step. For the approach that uses RL-based path planning the state space is
left unchanged, but clustered by rounding humming accordingly. Fuel is already
discrete as it is only changed by ±0.05 and bounded by [0, 1).

4.2 Results

Figure 1 compares the explored area of two experiments with the maximally
explorable area. For the first experiment the pre-specified backup policy and
graph-based path planning were used. The second experiment was conducted
with a backup policy learnt from a teacher trajectory comprising 324 transitions
and state clustering. In both experiments the exploration was safe and covered
large parts of the state space. The results of the second experiment are not as
good as those of the first one because the teacher trajectory was rather short
and thus the resulting backup policy was not as safe as possible w.r.t. the min-
reward. Consequently, actions were considered as unsafe unnecessarily early,
resulting in a smaller explored area.

Nevertheless the observations of both experiments were sufficient to obtain
good policies that were determined using dynamic programming (with near-
est-neighbour generalisation for unknown states) as well as Neural Fitted Q-
Iteration [7]. Table 1 shows the achieved average rewards and compares them
to the optimal policy, which was obtained analytically.

avg. reward
RL method graph-based RL-based path planning

Dynamic programming 1.164 1.132
Neural Fitted Q-Iteration 1.166 1.166
Optimal policy 1.166

Table 1: Performance of policies generated from observations of safe exploration.
Neural Fitted Q-Iteration was able to identify the optimal policy due to better
generalisation properties.
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Fig. 1: Explored area of two different experiments compared to the maximum
area that is safely explorable for τ = −1. The area “below” a curve was explored.
Due to system dynamics only states “above” the dotted line are reachable.

5 Conclusion and Future Work

In this paper we described the problem of safe exploration and pointed out
possible solutions. Those can be seen as a starting point for autonomous explo-
ration in industrial applications of RL. Unanswered questions include especially
the analysis of the variant using state clustering for stochastic MDPs, dealing
with high-dimensional state spaces, and error estimation of the safety function.
Moreover, we aim to apply the method to a real plant.
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