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Abstract: The Argon-Oxygen Decarburization (AOD) is the refining process of 
stainless steel to get its final chemical composition through several stages, where 
tons of materials are added and oxygen and inert gas are blown. The 
decarburization efficiency and the final temperature in each stage are two 
important values of this process. We present in this paper an empirical model, 
based on Multilayer Perceptron, to predict these values in order to automate and 
enhance the production performance of the AOD. Two architectures are proposed 
and compared. 
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1 Introduction 

Advances in Neural Computation have been continuously increasing during the last 
years and new fields in industrial applications have been developed with this 
technology, such as the fabrication of stainless steel, a product whose importance has 
grown after the Second World War, as the evolution in its production volume shows 
from 1 million metric tons melted by 1950 to 22 millions in 2004 [1].  
 The chemical refining and decarburization process is a key issue in stainless 
steel production. This process is performed in the AOD [2] (Argon Oxygen 
Decarburization) converter (fig. 1), a vessel built to contain up to 150 Tons of liquid 
steel, where the aimed chemical composition of the steel is achieved, reducing its 
carbon concentration (decarburization) until 0.01%.  
 In this paper we describe the design of an empirical model of the 
decarburization process in the AOD, based on Neural Networks. Its purpose is to 
predict the oxygen volume that must be injected into the molten metal in the AOD 
vessel to reduce the carbon concentration until the desired one. The final temperature 
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at the end of this chemical reaction can also be predicted. 2 architectures are proposed 
and compared. 

2 AOD’s Decarburization Process description. 

 The reduction of carbon content is performed in the AOD by a controlled 
injection of oxygen mixed with inert gas (argon or nitrogen) through submerged 
tuyeres (fig. 1). This is accomplished in several blowing stages, each one 
characterized by a constant gas flow and a predetermined oxygen/inert gas volume 
ratio. In this way, the molten metal is decarburizated with minimum unwanted 
metallic oxidation [1]. 
 The oxidation reactions are 
exothermic and produce an important 
temperature increase, from the initial 
1.400-1.500 ºC to more than 1.700ºC. 
Since this high temperature can damage 
the refractory internal lining of the AOD 
shell, cooling scrap is added, making good 
use of the extra thermal energy obtained. 
Along this process some material are also 
added to get the target exact chemical 
composition of the  metal regarding Si, 
Cr, Ni, Mn, Mo, Cu, etc., elements that, in 
addition to Fe, compose the different 
types of stainless steel. Also limes are 
added to control the slag viscosity. Figure 1: Scheme of the AOD.

 All these operations complicate the building of a theoretical analytical model 
which could fully describe the coupled thermo-metallurgical/fluid dynamic reactions 
that take place inside the AOD, although important efforts have been made to 
construct it [3-5]. But they are of limited practical application to our converters as the 
parameters that these models depend on are difficult to know or estimate in industrial 
applications [6]. 
 The decarburization efficiency, def, is defined as the percentage of the total 
oxygen blown that reacts with C and Si. The remaining oxygen is combined with Fe, 
Cr, Mn, etc, forming oxides, which should be reduced in a subsequent phase to 
recover the metals.  If def is predicted, the total amount of oxygen needed to reduce 
the %C can be calculated. 
 The final temperature, Tf, must be also known in order to decrease it by adding   
cooling scrap if necessary. So def and Tf are the variables that should be estimated by a 
decarburization model in an industrial application. 

3 Building the Empirical Model of the decarburization process 

 In order to determine def and Tf an empirical model of the AOD converter was 
built by the Acerinox factory melting team. For this purpose a data population was 
gathered with information about the production process: the initial conditions of the 
molten steel (chemical composition, initial temperature, mass, etc), the performed 
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operations (raw materials, lime, and scrap added, oxygen and inert gas flow applied, 
etc) and the final conditions (%C and the final temperature). The temperature was 
directly measured in the bath by means of a pyrometer cane at the same moment in 
which a sample was taken for the chemical laboratory. This pyrometer cane has a 
nominal error of 4ºC, which grows considerably with temperatures above 1750ºC. 
 There are more than 2300 cases, with different steel grades and conditions, 
collected during several years. Each case tries to represent one stage of the 
decarburization process for a production unit or “heat”. It consists of more than 41 
variables, including Tf and def. 
 Firstly, a model based on multidimensional linear regression was built. It was 
used to refine the metallurgical model, adding and removing different input variables. 
But now a new model, based in the same population but with Neural Networks 
technology has been implemented to estimate the def and Tf. A comparison of both 
techniques has been studied in [7] and a general superiority of Neural Networks over 
classical multiple linear regression was concluded. 
 An analysis of the independent 
variables has been done to divide the 
data population into groups with 
similar characteristics, so that the 
estimation method could work better 
for each one of them. For this purpose 
Principal Component Analysis (PCA) 
[8] was used. The application of this 
method to our data is more 
convenient since many input 
variables are correlated. 

Figure 2: Projection of data population and 
r centres over two principal componcluste ents. 

 A detailed study of PCA and the 
application of k-means algorithms to 
divide the data are presented in [7]. 
The population was divided in two 
groups. Fig. 2 shows a projection of 
data population on the two principal 
components obtained.  
 Thus, the first group contains 951 cases of the first blowing stage, where the ratio 
oxygen/inert gas is higher, and the second one groups 1440 cases of the following 
blowing stages. 

4 A Perceptron for estimation of average decarburization 
efficiency and final temperature 

4.1.  The model 

 Since the Multilayer Perceptron (MLP) is considered a universal approximator 
[9], we have designed one MLP to predict def and another one to estimate Tf. The 
MLP architecture (fig. 3) has a set of inputs variables, a hidden layer with an accurate 
number of neurons and a single neuron in the output layer. Firstly, 39 variables have 
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been used as inputs and in a second step those ones that are not correlated with the 
dependent variable have been eliminated, maintaining the training and validation 
errors. 
 
 The hyperbolic tangent transfer 
function was used for the neurons in the 
hidden layer and the linear transfer 
function for the output neuron.  
  Different numbers of neurons in the 
hidden layer were used. The back 
propagation and Levenberg–Marquardt 
training algorithms [10] were used. The 
second one provided the best results. To 
validate the training results of the MLPs 
and to test its prediction capability, the 
cross-validation strategy was used. The 
whole population was randomly divided 
into two sets: 85% for training and 15% 
for validation. 
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Figure 3: Architecture of the MLP  
designed with one hidden layer.  

4.2. Training and prediction 

 Since the population was split into two groups, two MLP to estimate def and other 
two to estimate Tf have been designed and trained.  
 In order to implement each MLP, we choose as input only the variables that can 
be known at the beginning of a blowing stage. But it must be noted that some 
information regarding to the aimed final status could also be used as known variables. 
This is the case of the “desired” final %C at the end of the stage, which can be used as 
input variable since the operator knows the aim value of carbon concentration which 
depends on the stage and type of steel to be produced. So, the variables have been 
divided in the following way:  

Vk, Vl : Variables to be predicted (def and Tf) 
Vi  ≠ (k,l) : Variables that can be used as input (known variables at the 

beginning of a blowing stage). 
  
To model the decarburization process, we have designed two Perceptron, namely:  

 MLP_E: Perceptron to predict the average decarburization efficiency 
MLP_T: Perceptron to predict final Temperature 

  
 When there are two or more dependent variables, it is usual to simultaneously 
predict them all using only Vi ≠ (k,l) input data (parallel architecture, fig. 4.a). But 
according to the nature of our problem, we can firstly predict the dependent variable 
def and secondly Tf (sequential architecture, fig 4.b). This is the case because the final 
reached temperature also physically depends on the average decarburization 
efficiency obtained in the stage. So we could use the real def as input data to train the 
MLP_T perceptron. But when we use both perceptrons to predict, we should use a 
sequential approach. We first estimate efficiency def (Vk) and then this value can be 
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used as input variable to the MLP_T to predict the second dependent variable Vl (final 
temperature). In this way, Tf is always predicted after def has been estimated.  
 

 
Figure 4: a) Parallel Architecture.   b) Sequential Architecture  

 
 We have compared the error in temperature prediction with both architectures, 
i.e. using only Vi ≠ (k,l) as input variables of both perceptrons (fig. 4.a) and using the 
calculated Vk as input of the second perceptron (fig 4.b). We have found a reduction 
in validation error when the sequential architecture is used (see tables 1 and 2). It can 
be seen that using Vk as input, the average absolute error of the validation data is 
reduced 1,4ºC in the first group (from 12,3 to 10,9) and up to 2ºC in the second one 
(9,2 to 7,2). Furthermore, the maximum absolute error has been also reduced in both 
groups (12ºC and 14ºC respectively).  
 

Input variables Training data (85%) Validation data(15%) Group type No. 
Neurons in the 
hidden layer Avg. Max. Avg. Max. 

1 Vi ≠(k,l)  27 6 11,1ºC 49,3ºC 12,3ºC 59,1ºC 
2 Vi ≠(k,l)  25 2 8,1ºC 62,5ºC 9,2ºC 58,1ºC 
Table 1: Tf  average and maximum absolute error with the parallel architecture 

model (using Vi ≠ (k,l))
 

Input variables Training data (85%) Validation data (15%) Group 
type No. 

Neurons in the 
hidden layer Avg. Max. Avg. Max. 

1 Vi ≠l 28 4 10,4ºC 46,8ºC 10,9ºC 47,2ºC 
2 Vi ≠l 26 2 6,3ºC 53,7ºC 7,2ºC 44,2ºC 

Table 2: Tf  average and maximum absolute error the with the sequential architecture 
model (using Vi  ≠ l) 

 
 The average and maximum absolute error for def estimation are shown in table 3. 
Average validation errors of 2.5 and 6.3 for def are quite good in this industrial 
context, where the mean value of efficiency is around 60 percent. Nevertheless there 
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are several cases with an error well beyond the average and represent atypical cases in 
which operational problems could have been happened. 
 

Decarburization 
efficiency (def) 

Training data 
(85%) 

Validation 
data (15%) Stage 

Avg. Min. Max. 

Neurons in the 
hidden layer Avg. Max. Avg. Max. 

   1 58.4 30,0 89,9 4 1,8 18,4 2,5 12,6 
>1 51,2 1,0 118,6 6 5,0 29,0 6,3 32,7 

Table 3:  Average and maximum absolute error in the estimation of def

5 Conclusions  

An empirical model has been proposed for decarburization of stainless steel in AOD 
based on a Multilayer Perceptron to predict the average decarburization efficiency and 
final temperature. 
 By using a sequential architecture, the average and maximum error of the 
predicted final temperature for each production stage is reduced. Although this 
prediction is fairly good for such a complex process as the stainless steel 
decarburization, there are some cases with high estimation error, which could be due 
to errors in the acquisition of data population or operational practices very different 
from the standard ones. 
 So, a new data population is now being gathering with more control in order to 
improve its quality and to enhance the estimation accuracy. 
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