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Abstract. Feature subset selection has become an essential part in data
mining applications. In this article, feature subset selection is integrated
into real time process fault detection. Various methods based on both
dependency measures and cluster separability measures are discussed. An
intuitive tool for process visualization is introduced. Experiments on nu-
clear power plant simulator data are carried out to assess the effectiveness
and performance of the methods. Early detection of failures, which is
one important goal in the project, is achieved with help of visualizations
developed in this work. In a leak scenario an illustrative example was
produced.

1 Introduction

Methodology governing modern process fault detection and diagnosis can be
divided into either quantitative or qualitative model-based methods and process
history based methods [1]. In this paper, the latter is of concern, as a new
intuitive Fault Indication SubSystem (FISS) is developed. The main focus is kept
on Nuclear Power Plant (NPP) operation, although the FISS can be adapted
into any industrial process.

Based on binary threshold values, the current power plant monitoring con-
tains little information on the level the process is propagating. While additional
information would lie on the graphs, the overall picture is merged among hun-
dreds of different variables. These two drawbacks can be improved by introduc-
ing a new continuous sensor and filtering the number of concurrent variables
depicted on control room. The latter utilizes Feature Subset Selection (FSS)
filtering [2], the former is built on Self-Organizing Maps (SOM) [3]. Demand for
renewal of monitoring is immense, as large-screen monitors are taking place in
control rooms.

This work was carried out within a larger entity, called the NoTeS project
(Nonlinear Temporal and Spatial forecasting: modeling and uncertainty analy-
sis [4]). NoTeS project is developing a generic toolset for spatio-temporal fore-
casting and forecast uncertainty analysis through analyzing five widely different
test cases, among which one, namely supporting operational decisions at NPP,
covers this topic. Experimental part and testing of the methods were carried
out with training simulator data kindly provided by the industrial partner Teol-
lisuuden Voima Oy (Olkiluoto NPP).
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2 Subset Selection: methodology

Feature Subset Selection is a preprocessing step that aims for a smaller set of
representative features without losing the essential characteristics of the original
data [5]. The main benefits of successful subset selection reads as 1) dimension
reduction for less complexed computation, 2)removal of irrelevant and redundant
variables for more compact representation, 3) better classification results with
more generalizable models, 4) better understanding of essential characteristics
of the underlying process and 5) compact visualization.

Traditional FSS methods are divided in filters and wrappers [2]. In this
section, the very principles in feature selection filters are discussed.

2.1 Preprocessing

To apply statistics into a multivariate time-series data (MTS), the time-series is
divided into a series of frames of equal length, which are then assumed quasista-
tionary. Moreover, for statistics to perform correctly, every feature is normalized
into zero mean and unit variance, thus D(u,0?) — D(0,1). For anomaly detec-
tion purposes, normalization can be calculated with respect to regular conditions
only.

2.2 Linear dependency

In linear sense, a set of features are considered the same if they correlate.
Correlation based feature selection can be built on distance matrix [6] D =
{D;;|D;j =1 —|pi;|}, where p;; is the correlation coefficient between two ran-
dom variables. Among every cluster, achieved by e.g. K-means algorithm [7],
the feature closest to the cluster centroid is chosen as a representative feature.

2.3 Cluster Separability

While the former method seeks for the most dissimilar set of variables, the
information theoretic approach maximizes the cluster separability based on as-
sumption that at least two different clusters exist. The cluster separability can
be defined as mutual information between two probability distributions p(x)
and ¢(x) and it is usually referred as Kullback-Leibner divergence, which is the
entropy of p relative to g or

= p(x)
D(plla) /_OOP(X) In e dx.
Similarly one can write D(q||p). While KL-divergence is non symmetric, a new
metric distance, say KL-distance is defined as d,,; = D(q||p) + D(p||q).
The feature subset selection algorithms built on information theoretic dissim-
ilarity are usually based on exhaustive search. These include e.g. conventional
sgreedyy or sequential algorithms (SFS, SBS and their variants) and Branch and
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Bound algorithm [8]. Alternatively, an intuitive technique, scalar feature selec-
tion [7] maximizes the information theoretic separability of individual variable
rectified by it’s correlations with already chosen variables.

2.4 Self-Organizing Maps

Self-Organizing Map (SOM) is an unsupervised neural network algorithm, which
has its advantages in visualizing high-dimensional data. The SOM consists of
neurons (units) organized on a regular two-dimensional grid. Each unit contains
a model vector m;, that are updated according to equation

mi(t + 1) - mi(t) + hci [X(t) - mi(t)] ’

where x is an input data vector, t = 0,1, 2, ... is the number of learning step and
h¢i is the neighborhood function, that controls how each unit is updated around
the best matching unit. Thus SOM algorithm organizes the model vectors so
that neighboring units in the grid represent similar data.

An ordered SOM grid is visualized in the U-matrix form (refer to Figure 1),
which consist of hexagonals that represent grid unit densities as well as nearest
neigbor distances by a certain colors.

SOM dissimilarity matrix D can be used for clustering as is [9], but more
powerful is forcing the input data into a shrunked grid, where every grid repre-
sents one potential cluster.

3 Anomaly monitoring

The feature selection phase uses the first two methods for 1) removing redun-
dancy and 2) weighting variables according to their importance. The assumption
is that adding a subset selection filter on the process data improves the sensitivity
of detection.

The second task is to evaluate the filtered data. In this work, process anomaly
is detected by comparison of the current state with the so-called normal reference
state, which is a sequence of normal operational data and thus the only history
needed for detection. The time development is visualized on a special SOM U-
matrix (see the next section). Subset selection can catch operator’s attention on
the most dubious variables. The decision and the actual diagnosis must be done
by the operator itself on the basis of subset selection and expert knowledge.

3.1 SOM visualization: FISS

The implemented SOM visualization (see Figure 1) works as follows.

e Initialize the SOM U-matrix so, that the color of the normal reference
state is fitted into a specified normal color range. This color range explains
normal variation in process.
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e Then, for every time step, draw U-matrix for the combination of the current
data frame and the normal reference frame. If the process state develops
into separate clusters, the distances between the neighboring units increase,
thus the color exceeds the normal color range. An intuitive full color range
is a colormap that runs through blue-green-yellow-red. A change from
green to red is naturally associated with problems.

The implemented SOM U-matrix visualization is clear and natural indicator
of possible fault. The interpretation of U-matrix is best described in Figure 1,
which shows few moments of evolving leakage in the main circulation pump P1.
The leftmost picture shows a normal event with no separation visible, thus the
color is equal to normal color range. On the middle, there is an early detection
of the leakage four minutes after the fault started evolving. According to tick
marks, the process states are fully separated, but the difference between the
frames is relatively low, although clearly visible with light orange colored border.
Finally, the rightmost picture shows a moment just after the scram, where most
primary variables are shut down, and thus the state separation is maximized.

Experiments on the data showed, that SOM U-matrix distances exhibit a
pretty low variation regardless of the clusterability. That is, inspecting the color
chances of the U-matrix would hardly give a rough picture of possible state
separation. This flaw was outcome by nonlinear transformation of the U-matrix
elements, thus

Uij — exp(Us;).

U-matrix, t = 1.5 min U-matrix, t =5 min U-matrix, t = 17 min

Figure 1: Scenario 1: 0-10% leakage in the main circulation pump P1. SOM-
visualization of various moments. Normal reference state and current state are
marked with »o» and »x» respectively.

4 Experimental results and discussion

4.1 Datasets

The dataset consists of four scenarios simulated at the operator’s training centre
in Olkiluoto NPP [10]. In addition, some synthetic data was constructed on the
basis of simulated dataset.
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Table 1: Scenario 1: 0-10% leakage on main circulation pump P1. The most
important events. Compare with the FISS-visualization in Figure 1.

time (min:s) Event
1:00 The fault started evolving
5:48 Controlled area floor drain sensor triggered
9:34 Rotation difference in pump P1 detected
13:49 Reactor scram triggered by the leakage control

Each scenario simulates a propagation of a specified malfunction model,
which includes e.g. leakage in main circulation pump or pressurizer failure.
The scenarios simulate the actual behavior of automatic process control, thus no
operational decisions were done and all the scenarios ended in emergency shut-
down. Each scenario consists of 78 process variables recorded at each sampling
instant. In addition the respective caution and alarm signals (Table 1) were
printed for further use.

U-matrix, t = 6 minutes

Normal operation colorbar

Steamline 1 steamflow Reheater pressure
316.5 8.24
316 WVMJ 8.22 Mo, iy
3155 8.2
0 5 10 0 5 10
Statistical dissimilarity (0/1) Condenser Pressure after
15 431E1 surface condensate pumps
1 1.1 30.02
05 I IIII II II i %
0
-0.5 1.05 29.98
123456 7 8 9101112131415 0 5 10 0 5 10

Figure 2: Control room visualization, Man-machine interface (MMI): FISS com-
bined with statistical Kolmogorov-Smirnov test (KS-test), process flow diagram
and selected process variable graphs. A red bar on a given variable indicates
negative KS-test i.e. dissimilarity between two probability distributions.
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4.2 Results and conclusion

Various experiments were carried out in MATLAB environment.

Subset selection algorithms proved useful in various situations. Removing
the irrelevant variables clearly improved the separability of two different states.
This, however, was not fitted into an objective comparison chart as the research
topic itself is highly subjective — no two fault scenarios are comparable.

The greatest advantage of subset selection is connected to situations governed
by small, local changes in the process. These include e.g. sudden vibrations in a
pump, or local coolant losses. To emphasize, these small deviations are the most
important for early detection. The special man-machine interface shown in the
Figure 2 then serves as an auxiliary component for fault detection and isolation.

On the other hand, most process variables are highly dependent of each
other, that is, for example, water discharging from the main circulation pump
immediately affects surface levels and pressures all around the primary circuit.
In such severe situations, subset selection hardly has any contribution on fault
isolation. The FISS, however, can be used to track the evaluation of the process.

Finally, it should be pointed out, that selecting the FSS-method is a trade-
off between high state separability (indexing for state separability) and process
diversity (clustering for dissimilarity). By now, the best answer does not exist.
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